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the covergence of stochastic iterative algorithms

Watkins (1989) and Watkins and Dayan (1992) proved that Q-learning converges 
with probability one 

Dayan (1992) observed that TD(0) is a special case of Q-learning  and therefore 
converges with probability one

 Q-learning algortihm as a stochastic form of DP

Present a proof of convergence for a  general class of stochastic processes of 
which Q-learning is a special case
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Let 

 be a discrete state space, 

be the discrete set of actions available to the learner when the 
chain is in state  i
probability of making a transition from state  i  to state  j  where
u Є U (i) 

definitions

is a value function which is the expected sum of discounted future 
costs

a function from states to actions which the learner defines. 

state transition probabilities. Associated with every policy  μ is a 
markov chain defined by these probabilities.

is instantaneous cost associated with each state  i  and action  μ
          is a random variable with expected value 



We wish to find a policy that minimizes the value function 

The Bellman's equation characterizes the optimal value of the state in terms of 
optimal values of possible successor states

Such a policy is referred to as an optimal policy and the corresponding 
function is referred to as the optimal value function. Optimal value 
function is unique, but an optimal policy need not to be!

 given that the system begins in state i and follows policy μ; Value function is: 

Where                     is the state of the 
markov chain at time  t and  
Future costs are discounted by a factor γ t 
where γ Є (0,1) 
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Suppose that action u is selected and the system transitions to state j. The expression 
                        

To motivate Belman's equation, suppose that the system is in state  i  at time  t .
consider how  V*(i)  should be characterized in terms of possible transitions out of 
state i  ?? 

The minimum of the expected value of this expression, over possible choices of 
actions, is a plausible measure of the optimal cost at  i  and by Bellman's equation is 
indeed equal to V*(i)

is the cost of making a transition out of state  i  plus the discounted cosf of following 
an optimal policy thereafter
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Solving Bellmans's equation by value iteration

Value iteration solves for  V*(i)  by setting up a recurrence relation for which 
Bellman's equation is a fixed point

Denoting the estimate of 

This iteration can be shown to converge to V*(i) for arbitary initial V (0 )(i) 
 (Bertsekas, 87)
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we have;
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The proof is based on showing that the iteration from V(k)(i)  to V(k+1)(i) is  a contraction 
mapping. It can be shown that 

which implies that V(k)(i) converges to V*(i)  and also places an upper bound on the 
convergence rate
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Watkins (89) utilized an alternative notation for expressing Bellman's equation 
that is particulary convenient for deriving  learning algorithms.

An alternative notation

Using this notation Bellman's equation can be written as:

Define the function  Q*(i,u)  to be the expression appearing inside the “min” 
operator of Bellman's equation
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Moreover, value iteration can be expressed in terms of Q functions:

Where  V(k)i   is defined in terms of   Q(k)(i,u) 
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Using Q' s instead of V ' s derives from the fact that the minimization operator 
appears inside the expectation in EQ.8 whereas it appears outside of the 
expectation in EQ. 4 This fact plays an important role in the convergence proof.
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The Q-learning algorithm is a stochastic form of value iteration.

EQ.8  expresses the update of the Q values in term of the Q values of successor 
states. To perform a step of value iteration requires knowing the expected cost and the 
transition probabilities. Although such a step cannot be performed without a model, it is 
possible to estimate the appropriate update.

For an arbitrary V  function the quantity      can be estimated by the 
quantity V(j), if successor state  j  is chosen with probability p

ij
(u). But this is assured 

by simply following the transitions of the actual Markovian environment, which makes 
a transition from state  i  to state  j  with probability  p

ij
(u). 
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Thus the sample value of V at the successor state  is an unbiased estimate of the 
sum. Moreover,           is an unbiased estimate of 



This reasoning leads to the following algorithm ,
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where
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The variables                 are zero except for the state that is being updated at 
time t 

Where                and             denote the 
learner's estimates of the Q and V 
functions at time t respectively



The fact that Q-learning is a stochastic form of value iteration immediately 
suggests the use of stochastic approximatiın theory, in particular the classical 
framework of Robbins and Monro(51)

Robbins-Monto theory treats the stochastic convergence of a sequence of 
unbiased  estimates of a regression function, providing conditions under 
which the sequence converges to a root of the function.Although the 
stochastic convergence of Q-learning is not an immediate concequence of 
Robbins Monro theory the theory does provide results that can be adapter to 
studying the convergence of DP based learning algorithms!!??
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