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the covergence of stochastic iterative algorithms

outline

Q-learning algortihm as a stochastic form of DP

Present a proof of convergence for a general class of stochastic processes of
which Q-learning is a special case

key works

Watkins (1989) and Watkins and Dayan (1992) proved that Q-learning converges
with probability one

Dayan (1992) observed that TD(0) is a special case of Q-learning and therefore
converges with probability one



definitions

be a discrete state space,

be the discrete set of actions available to the learner when the
chain is in state 1

probability of making a transition from state i to state ;j where
u€ U (i)
a function from states to actions which the learner defines.

state transition probabilities. Associated with every policy u is a
markov chain defined by these probabilities.

is instantaneous cost associated with each state i and action u
€] is a random variable with expected value (g

is a value function which is the expected sum of discounted future
costs



given that the system begins in state i and follows policy ¢, Value function is:

N-1
ooy # - \ _I!_ P W
Va(t) = lim E{} v'cs, (u(s1))]s0

is the state of the
SXIN 1 markov chain at time t and

Future costs are discounted by a factor ) :

where Y ) (0,])

t=i)

We wish to find a policy that the value function

Such a policy is referred to as an optimal policy and the corresponding
function is referred to as the optimal value function. Optimal value
function is unique, but an optimal policy need not to be!

V(1) = min V(1)
H

The Bellman's equation characterizes the optimal value of the state in terms of
optimal values of possible successor states

V(i) = min {&;(u) +~ ) pii(w)V(5)}
()= min {&(w) + 73 ps(0)V ()]




To motivate Belman's equation, suppose that the system is in state i attime ¢.
consider how V*(i) should be characterized in terms of possible transitions out of

state i ?? | - | B
V*(2) = min {¢i(u) +~ Z: pii(wW)V*(5) IS

uel/(i)

jES

Suppose that action u is selected and the system transitions to state j. The expression

is the cost of making a transition out of state i plus the discounted cosf of following
an optimal policy thereafter

The of the expected value of this expression, over possible choices of
actions, is a plausible measure of the optimal cost at i and by Bellman's equation is
indeed equal to V*(i)



Solving Bellmans's equation by value iteration

V(i) = min {e(u) + 13 pis()V=(j)}

uel/(i) e

Value iteration solves for V'*(i) by setting up a recurrence relation for which
Bellman's equation is a fixed point

Denoting the estimate of
we have,

V*(7) at the k' iteration as V(¥)(7),

V (k4+1) (i j _

min {¢;(u) + Y pi () VI (5)}

well(1) -

JES

This iteration can be shown to converge to V*(i) for arbitary initial ¥ /(i)
(Bertsekas, 87)




The proof is based on showing that the iteration from V*(i) to V*"”(i) is a contraction
mapping. It can be shown that

max |V (7)) — V*(3)] < 4 max VR (i) — V*(i)] 5

which implies that V(i) converges to V*(i) and also places an upper bound on the
convergence rate



An alternative notation

Watkins (89) utilized an alternative notation for expressing Bellman's equation
that is particulary convenient for deriving learning algorithms.

Define the function Q*(i,u) to be the expression appearing inside the “min”
operator of Bellman's equation

Q" (i, u) = &(u) + 7 3 pig (W)V*(5)

JES

Using this notation Bellman's equation can be written as:

V*(i) = min Q*(i,u) ik

wel (i)



Moreover, value iteration can be expressed in terms of Q functions:

Where V¥i is defined in terms of O®(i,u)

V() = min QW (0, u) e
uell (1)

Using O' s instead of J'' s derives from the fact that the minimization operator
appears inside the expectation in EQ.8 whereas it appears outside of the
expectation in EQ. 4 This fact plays an important role in the convergence proof.

I__,...—{ﬁ;-l—ﬂ{fj — min { rH + v T Pi (u)V (k ][ 7, )}

uell(t)

1—‘5




The Q-learning algorithm is a stochastic form of value iteration.

EQ.8 expresses the update of the O values in term of the O values of successor
states. To perform a step of value iteration requires knowing the expected cost and the
transition probabilities. Although such a step cannot be performed without a model, it is

possible to estimate the appropriate update.

For an arbitrary V' function the quantity DPESZSOLE®D] can be estimated by the
quantity V(j), if successor state j is chosen with probabilitypij(u). But this is assured
by simply following the transitions of the actual Markovian environment, which makes
a transition from state i to state j; with probability pij(u).

Thus the sample value of V at the successor state is an unbiased estimate of the
sum. Moreover, P is an unbiased estimate of FEH




This reasoning leads to the following algorithm ,

Qii1(51,us) = (1 — e se,ue)) Qe Sty 1) + e se, us)[es, (ur) + Vi st41)]

Where CHCED)] and L8 denote the
where learner's estimates of the O and 1
functions at time ¢ respectively

Vi [::it+1 ) = l'l.l.ill . f-':}t[:'ﬁf'- “‘f:]

uEU (5141

The variables [EHEMM] are zero except for the state that is being updated at
time ¢



as conclusion

The fact that Q-learning is a stochastic form of value iteration immediately
suggests the use of stochastic approximatiin theory, in particular the classical
framework of Robbins and Monro(51)

Robbins-Monto theory treats the stochastic convergence of a sequence of
unbiased estimates of a regression function, providing conditions under
which the sequence converges to a root of the function.Although the
stochastic convergence of Q-learning is not an immediate concequence of
Robbins Monro theory the theory does provide results that can be adapter to
studying the convergence of DP based learning algorithms!!??



Convergence proof of Q learnin

Theorem 1 A random iterative process A, 11(x) = (1—a,(2))A(2)+8,(2) F.(x)

converges to zero w.p.1 under the following assumptions:

1) The state space is finite.

‘(2) < oo, 3, Bulz ) = o0, ¥, ff () < oo, and

;’) || E{ F,x ] |P¢} || W< | AN || w, where v E L 0,1).

4) Var{F,(2)|P,} < C(1+ || A, ||w)?, where C' is some constant.

Here P, = {A, A g, oo, Fq, oo @1, o ooy Buct, . ..} stands for the past al
step n. Fo(z), a,(x) and 3.(x) are allowed to depend on the past insofar as
the above conditions remain valid. The notation || - ||w refers to some weighted

MArmum norm.




Lemma 1 A random process

Wan41 (*1") — {l - {1'}1( ))” i ) + "j‘rl jfﬂ,( ]
converges to zero with probability one if the following conditions are salisfied:

1) Y, an(z) = 00, a2 (x) < 0o, 3, Bulz) = 00, and ¥, 8%(2) <

uniformly w.p. 1.
2) E{r.()|P.} =0 and E{ri(z)|P.} < C w.p.1, where

i i
P?L — {U-?m Wp—1y+ 3 Tn—1:Tn-2,.+ ., 0p—1,0p_32,..., -"j:r?.—h .’dﬂ—E: - }

All the random variables are allowed to depend on the past P, .

Proof. Except for the appearance of 3,,(z) this is a standard result. With
the above definitions convergence follows directly from Dvoretzky’s extended
theorem (Dvoretzky, 1956).




Lemma 2 Consider a random process X, 1(z) = G, (X, z), where
G (83X, 2) = 8G.(X,, )

Let us suppose that if we kept || X,, || bounded by scaling, then X, would
converge to zero w.p.1. This assumption is sufficient to quarantee that the
original process converges to zero w.p. 1.

Proof. Note that the scaling of X, at any point of the iteration corre-
sponds to having started the process with scaled Xy. Fix some constant C'.

If during the iteration, | X, || increases above ', then X, is scaled so that

| X. ||[= C. By the assumption then this process must converge w.p.1. To
show that the net effect of the corrections must stay finite w.p.1 we note that if
| X, || converges then for any e > 0 there exists M, such that || X,, [[<e < C
for all n > M, with probability at least 1 —e. But this implies that the iteration
stays below €' after M, and converges to zero without any further corrections.
L]




Lemma 3 A stochastic process X, 41(x) = (1 — a(x)) X, (2) + v8.(2) || Xa
converges to zero w.p.1 provided

1) x €S, where S is a finite set.

2) ¥, anlx o0, Yo, ai(x) < oo, Yo, OBulz) = o0, 3, B2(x) < oo, and
E{a,(z)} uniformly w.p.1.

Proof. Essentially the proof is an application of Lemma 2. To this end,
assume that we keep || X, ||< €1 by scaling which allows the iterative process
to be bounded by

|Jf1r:l,+1 (JH < Ll - f-}?n(-ﬂ)) J{n(w” + 7"-*'331(4{"](31

This is linear in | X, ()| and can be easily shown to converge w.p.l to some

X*(z), where || X* ||<€ 4. Hence, for small enough e, there exists M;(e)
such that || X, [[< Cy/(1+¢€) for all n > M,(e) with probability at least p;(e).
With probability p;(¢) the procedure can be repeated for C'y; = Cy/(1 + €).

sontinuing in this manner and choosing pi(€) so tha n(€) goes to one as
Cont g in tl d cl g that J]. goes t

e — 0 we obtain the w.p.1 convergence of the bounded iteration and Lemma
2 can be applied. O




Theorem1

Proof. By defining r,(z) = F,(x) — E{F.(z)|P.} we can decompose the

iterative process into two parallel processes given by

bup1(x) = (1 = an(x))bn(x) + Bula)E{Fu(2)| P}
Wit () = (1 —ag(x))wa(z) + Bola)r.(z) (21)

where A, (z) = 6,(x) + w,(2z). Dividing the equations by I'V(_;t.') for each

z and denoting 6, (x) = &,(z)/W(z), w,(z) = w,(z)/W(z), and r, (z) =
ro(2)/W(x) we can bound the 6. process by assumption d) dlld rewrite the
equation pair as

Supr(@)] < (1= an(@))]o,(2)] +7Ba(2) || 6]+, |

r r

w, () (1 —an(z)w, (z) + 'T-HR(F"}""'EU’)




Assume for a moment that the A, process stays bounded. Then the
variance of 7 (z) is bounded by some constant (' and thereby w, converges
to zero w.p.l according to Lemma 1. Hence, there exists M such that for all
n > M | w, |< € with probability at least 1 — e. This implies that the 6,

process can be further bounded by

16741 (2)] < (1 = an(@))]64(2)] + 1Bulz) || 6, + € |

with probability > 1 — €. If we choose €' such that v(C' + 1)/C < 1 then for
| 6, ||> Ce
76 +ell<AC+D)/C 6, |

and the process defined by this upper bound converges to zero w.p.1 by Lemma




3. Thus || 6, || converges w.p.1 to some value bounded by C'e which guarantees
the w.p.1 convergence of the original process under the boundedness assump-
tion.

By assumption (4) '.":L(J.') can be written as (1+ || 6, + w,, ||)s.(z), where
E{s?(z)|P,} < C. Let us now decompose w,, as u, + v, with

Unp1(2) = (1 = an(2))un(2) + 78a(2) || 6, + tn + vn || sn(2)

and v, converges to zero w.p.l by Lemma 1. Again by choosing ' such that
Y(C 4+ 1)/C < 1 we can bound the §, and wu, processes for || &, + u, ||> Ce.
The pair (6, , u,) is then a scale invariant process whose bounded version was
proven earlier to converge to zero w.p.1 and therefore by Lemma 2 it too con-
verges to zero w.p.l. This proves the w.p.l convergence of the triple 6., .,
and v, bounding the original process. O




Theorem 2 The Q-learning algorithm given by
Qi1(5e,ur) = (1 — ap(sp, ue) )Qi(5¢, us) + @84, ug)[es, (ue) + Vil 5641)]

converges to the oplimal QQ*(s,u) values if

1) The state and action spaces are finite.

2) Yy ai(s,u) =00 and Y, af(s,u) < oo uniformly w.p.1.

3) Var{es(u)} is bounded.

3) If v =1 all policies lead lo a cost free terminal state w.p.1.




Proof. By subtracting Q)*(s,u) from both sides of the learning rule and
by defining A;(s,u) = Qs(s,u) — Q*(s,u) together with

Ft(-b'?'t-i) = Cg(“) + 'TV::(-'-"'REII) — 62!{53 “] (12)

the Q-learning algorithm can be seen to have the form of the process in theorem
1 with Bi(s,u) = aq(s, u).

To verify that Fi(s,u) has the required properties we begin by showing
that it is a contraction mapping with respect to some maximum norm. This
is done by relating F; to the DP value iteration operator for the same Markov
chain. More specifically,

max \E{F,(i,u)} Yy max | Z{JH u)[Vi(7) = V(7))

1111:1\2 Pji(u lIld‘(|CL)t (7,v) = Q7(y,v)]

1113&2 Pij(u) WA( (7) = T(V2)(i)




where T' is the DP value iteration operator for the case where the costs associ-
ated with each state are zero. If v < 1 the contraction property of T and thus

of F; can be seen directly from the above formulas. When the future costs are
not discounted (4 = 1) but the chain is absorbing and all policies lead to the
terminal state w.p.1 there still exists a weighted maximum norm with respect
to which T" is a contraction mapping (see e.g. Bertsekas & Tsitsiklis, 1989).
The variance of Fi(s,u) given the past is within the bounds of theorem 1

as it depends on Q¢(s, u) at most linearly and the variance of ¢;(u) is bounded.

Note that the proof covers both the on-line and batch versions. O




Resources

These slides mostly rely on the technical report 'On the convergence of stochastic
iterative dynamic programming algorithms' by Jaakkola T., Jordan M., and Singh S.
which is one of the resources of the book Neuro-Dynamic Programming, by
Bertsekas D. and Tsitsiklis J.

For more theoretical work;

Neuro-Dynamic Programming, by Bertsekas D. and Tsitsiklis J., Athena
Scientific, 1996

Eyal Even-Dar and , Yishay Mansour, Learning Rates for Q-learning,
Journal of Machine Learning Research 5 (2003) 1-25



