
Monte Carlo methods for solving
Markov Decision Processes

A talk on course T-61.6020:
Reinforcement learning – theory and

applications

Based on Ch. 5 in the book by Sutton & Barto

Ville.Viitaniemi@tkk.fi
2006-2-7

mailto:Ville.Viitaniemi@tkk.fi

Contents

● What are Monte Carlo Methods?
● Background and motivation
● MC Policy evaluation
● MC Action value estimation
● MC Control
● Summary

What is Monte Carlo

● use of random samples, hope that results
average to right answer with large number of
samples

● example: numerical integration by sampling
● example: estimating posteriori distribution in

Bayesian inference by samplibg
● carrying one single sample value through

calculations is much easier than considering
whole distributions at once

Background

● reinforcement learning problems formalised as
Markov Decision Processes

● environment dynamics
– completely known -> “optimal control”

– unknown: dynamics must be learned simultanously
with control

● exploitation vs. exploration dilemma
● example: random exploration useful in simple simulations

Notation

● at time environment in state

● the agent performs action

● agent controlled by policy :
probabilities of choosing action in state

● the environment moves into state sampled from
density

● the agent receives a reward according

● to density

=s , a

st1

stt

a

r t1

P st st1
at

R st st1
at

s

a t

Dynamic programming

● if dynamics of the environment completely
known, optimal policy can be solved by
dynamic programming

● DP based on
– 1) dividing problem into subproblems

– 2) storing the results of overlapping subproblems

● in MDP's storage via state and state-action
value functions and V s Q s ,a

Dynamic programming

● Bellman's optimality equation turned into
algorithms
– policy evaluation

– policy iteration: policy evaluation+improvement

– generalised policy iteration

● mathematically sound
● requires complete knowledge of dynamics
● curse of dimensionality

Monte Carlo methods

● approximate expected returns by empirical
averages as experience is observed
– experience: a terminating sequence of states,

actions and reward

● division of time into episodes enforced
– averaging of returns over the episode

– more fine-grained division of time not considered

● on-line (actual) experience
● simulated experience

– complete model of the environment still not required

Monte Carlo policy evaluation

● repeat until convergence:
– generate experience using policy

– for each visited state compute the following return

– average states' observed return over episodes

● two flavours:
– first visit

– every visit

● both proven to converge to
– rate of convergence

V s

O1/n

MC policy evaluation

● MC estimates independent for each state
– not bound together via Bellman's equation

– i.e. MC method doesn't bootstrap

Monte Carlo action value estimation

● without model of dynamics, state values not
enough to determine policy
– not known which states follow from an action

– action values needed instead

– with MC methods emphasis on estimating Q*

● basically the same MC method as for states
– same rate of convergence

MC action value estimation

● main complication: all state-action pairs may
not be in the experience
– esp. deterministic policies

● this is problem of maintaining exploration
● remedy 1: exploring starts

– start distribution forced to have prob. >0 for all pairs

– what to do with real experience

● remedy 2: consider only stochastic policies with
prob. > 0 for all pairs

Monte Carlo control

● same idea as discussed before in connection
with DP: generalised policy iteration
– alternating action value evaluation and greedy

policy improvement steps

Monte Carlo control

● e.g. classical policy iteration with full iterative
action value evaluation

● for convergence also less exact (less tedious)
value iteration seems to be sufficient
– moving Q towards actual value function enough

– convergence of such MC method still to be proved,
even though it seems inevitable

Maintaining exploration

● to get experience from all state-action pairs,
experience needs to be generated with soft
policy that assigns p > 0 for all actions
– still, policy may be very close to optimal

deterministic policy, if the probability mass
distributed to the remaining actions is kept small

– -soft policy: random action with prob =

– luckily, policy iteration works also for -soft policies
● greedy policy improvement step replaced with -greedy

variant

Maintaining exploration: on-policy
and off-policy control

● experience can be generated by
– 1) same policy that is to be evaluated and optimised

(on-policy control)

– 2) different soft policy (off-policy control)
● e.g. soft policy for control, greedy policy to be estimated

● when using off-policy control, the experienced
returns must be weighted
– the weight factor determined by the policies only, no

knowledge of environment dynamics needed

– potential problem: slow learning, only tails of
experience lead to significant weights

Incremental implementation

● MC methods can be implemented incrementally
– i.e. no need to store all the previous experience,

just the accumulated returns

● policy improves over time
– nonstationary return distributions

– possibly desirable to e.g. weight recent returns
more heavily

Summary of MC methods

● policy evaluation through “empirical averages”
● no knowledge about environment synamics

needed
● can be used with simulated experience
● MC methods can be focused on a set of

interesting states
● possibly less prone to violations to Markov

property of states thaan DP (states not so
intermingled)

Summary

● GPI techniques applicable
– counterparts of policy evaluation and policy

improvement exist

● maintaining sufficient exploration an issue
– exploring starts

– soft policies
● on-policy and off-policy control

● identification on the methods only recently
– little proofs of convergence

– effectiveness tested only in some cases

