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What is Monte Carlo

● use of random samples, hope that results 
average to right answer with large number of 
samples

● example: numerical integration by sampling
● example: estimating posteriori distribution in 

Bayesian inference by samplibg
● carrying one single sample value through 

calculations is much easier than considering 
whole distributions at once 



Background

● reinforcement learning problems formalised as 
Markov Decision Processes

● environment dynamics
– completely known -> “optimal control”

– unknown: dynamics must be learned simultanously 
with control

● exploitation vs. exploration dilemma
● example: random exploration useful in simple simulations



Notation

● at time    environment in state 

● the agent performs action      

● agent controlled by policy                  :          
probabilities of choosing action    in state  

● the environment moves into state        sampled from 
density        

● the agent receives a reward       according 

● to density 
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Dynamic programming

● if dynamics of the environment completely 
known, optimal policy can be solved by 
dynamic programming 

● DP based on
– 1) dividing problem into subproblems

– 2) storing the results of overlapping subproblems

● in MDP's storage via state and state-action 
value functions          and    V s  Q s ,a 



Dynamic programming

● Bellman's optimality equation turned into 
algorithms
– policy evaluation

– policy iteration: policy evaluation+improvement

– generalised policy iteration

● mathematically sound
● requires complete knowledge of dynamics
● curse of dimensionality



Monte Carlo methods

● approximate expected returns by empirical 
averages as experience is observed
– experience: a terminating sequence of states, 

actions and reward

● division of time into episodes enforced
– averaging of returns over the episode

– more fine-grained division of time not considered

● on-line (actual) experience
● simulated experience

– complete model of the environment still not required



Monte Carlo policy evaluation

● repeat until convergence:
– generate experience using policy 

– for each visited state compute the following return

– average states' observed return over episodes

● two flavours: 
– first visit

– every visit

● both proven to converge to 
– rate of convergence 
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MC policy evaluation

● MC estimates independent for each state
– not bound together via Bellman's equation

– i.e. MC method doesn't bootstrap



Monte Carlo action value estimation

● without model of dynamics, state values not 
enough to determine policy
– not known which states follow from an action

– action values needed instead

– with MC methods emphasis on estimating Q*

● basically the same MC method as for states
– same rate of convergence



MC action value estimation

● main complication: all state-action pairs may 
not be in the experience
– esp. deterministic policies

● this is problem of maintaining exploration
● remedy 1: exploring starts

– start distribution forced to have prob. >0 for all pairs

– what to do with real experience 

● remedy 2: consider only stochastic policies with 
prob. > 0 for all pairs



Monte Carlo control

● same idea as discussed before in connection 
with DP: generalised policy iteration
– alternating action value evaluation and greedy 

policy improvement steps



Monte Carlo control

● e.g. classical policy iteration with full iterative 
action value evaluation

● for convergence also less exact (less tedious) 
value iteration seems to be sufficient
– moving Q towards actual value function enough

– convergence of such MC method still to be proved, 
even though it seems inevitable 



Maintaining exploration

● to get experience from all state-action pairs, 
experience needs to be generated with soft 
policy that assigns p > 0 for all actions
– still, policy may be very close to optimal 

deterministic policy, if the probability mass 
distributed to the remaining actions is kept small

–    -soft policy: random action with prob =  

– luckily, policy iteration works also for    -soft policies
● greedy policy improvement step replaced with     -greedy 

variant



 





Maintaining exploration: on-policy 
and off-policy control

● experience can be generated by
– 1) same policy that is to be evaluated and optimised 

(on-policy control)

– 2) different soft policy (off-policy control)
● e.g. soft policy for control, greedy policy to be estimated

● when using off-policy control, the experienced 
returns must be weighted 
– the weight factor determined by the policies only, no 

knowledge of environment dynamics needed

– potential problem: slow learning, only tails of 
experience lead to significant weights 



Incremental implementation

● MC methods can be implemented incrementally
– i.e. no need to store all the previous experience, 

just the accumulated returns 

● policy improves over time
– nonstationary return distributions

– possibly desirable to e.g. weight recent returns 
more heavily



Summary of MC methods

● policy evaluation through “empirical averages”
● no knowledge about environment synamics 

needed
● can be used with simulated experience
● MC methods can be focused on a set of 

interesting states
● possibly less prone to violations to Markov 

property of states thaan DP (states not so 
intermingled)



Summary

● GPI techniques applicable
– counterparts of policy evaluation and policy 

improvement exist

● maintaining sufficient exploration an issue
– exploring starts

– soft policies
● on-policy and off-policy control

● identification on the methods only recently
– little proofs of convergence

– effectiveness tested only in some cases


