Sutton, R.S. and Barto, A.G. (1998). Reinforcement Learning: An Introduction, MIT Press, Chapter 3: **The Reinforcement Learning Problem**

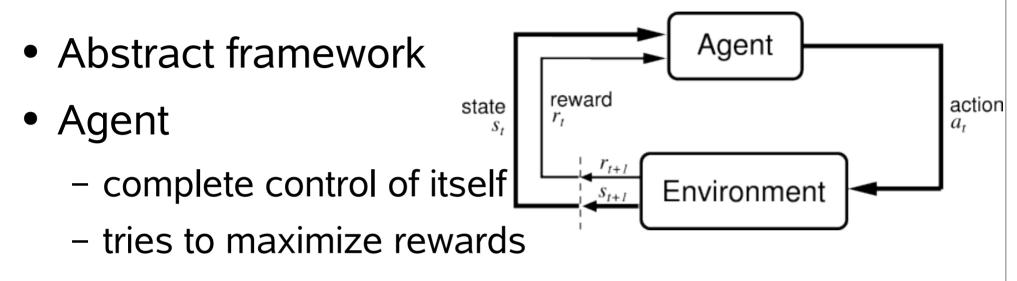
Jaakko Väyrynen jaakko.j.vayrynen@tkk.fi

T-61.6020 Reinforcement Learning – Theory and Applications January 31, 2006

- Agent-environment interface framework
- Goals, rewards, returns
- Markov property
- Markov Decision Process (MDP)
- Value functions
- Optimal value functions
- Summary

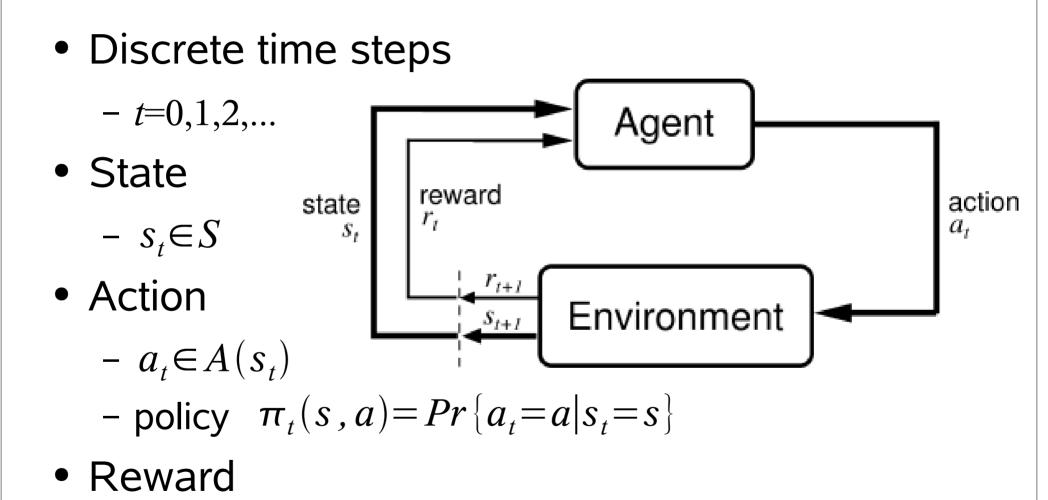
- Agent-environment interface framework
- Goals, rewards, returns
- Markov property
- Markov Decision Process (MDP)
- Value functions
- Optimal value functions
- Summary

Agent-environment framework



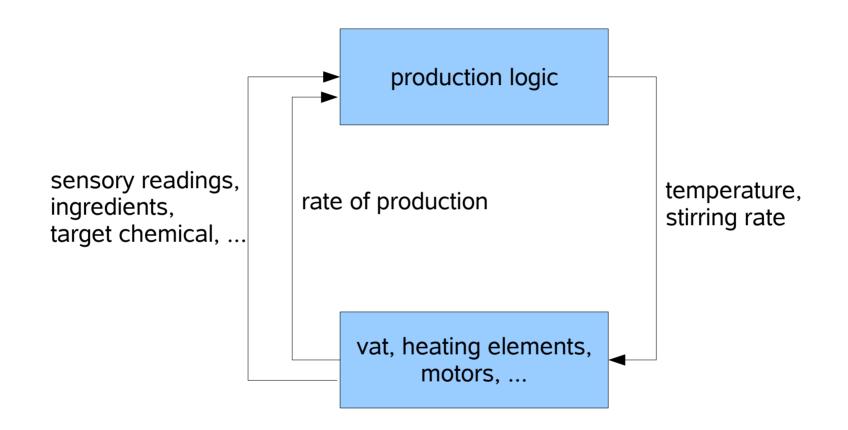
- Environment
 - defines the task with rewards
- Interaction: three signals
 - state, action, reward

Formal definition



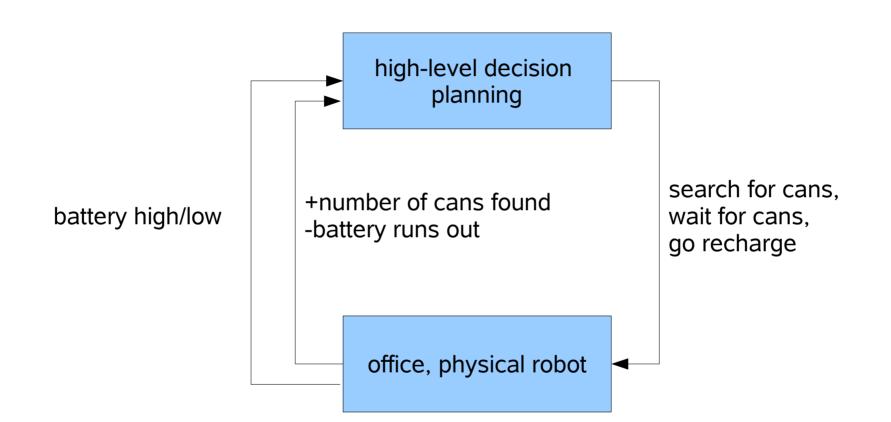
 $-r_{t+1} \in \Re$

Example: Bioreactor



Task: produce target chemical

Example: Recycling robot



Task: choose best action on how to collect empty cans in an office environment

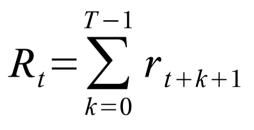
- Agent-environment interface framework
- Goals, rewards, returns
- Markov property
- Markov Decision Process (MDP)
- Value functions
- Optimal value functions
- Summary

Goal and reward

- Reward is a single real valued number
- Should determine the goal of the task ("what")
- Should **not** assign sub-goals or prior knowledge of the problem ("how")
- Informal goal of the agent: maximize reward in the long run
- Return *R*_{*i*}: function of future rewards
 - episode tasks
 - continuous tasks

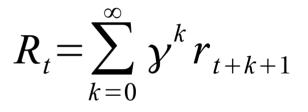
Episode tasks and return

- Final time index *T* exists
 - games like checkers
 - escape from a maze
- Return R_t
- All states *S*⁺
 - distribution of reset states
 - non-terminal states S
 - terminal states



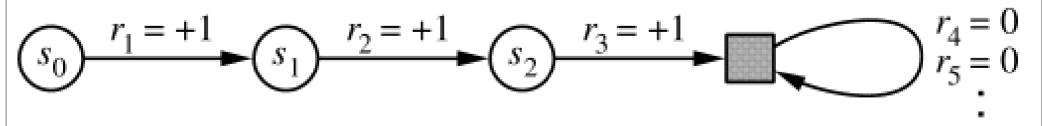
Continuous tasks and return

- There is no final time index
 - continual process-control task
 - robot with a long life span
- Return R_t
- Discount rate $0 \le \gamma \le 1$



Unified notation

- Absorbing state
 - marks the end of an episode
 - transitions only to itself
 - zero reward
- Episodes start from time index 0
- Episode indexes are left out



 $R_t = \sum \gamma^k r_{t+k+1}$

- Agent-environment interface framework
- Goals, rewards, returns
- Markov property
- Markov Decision Process (MDP)
- Value functions
- Optimal value functions
- Summary

Markov property

- State signal represents everything the agent knows about its environment
- Markov state
 - preserve relevant information
 - only current state affects the next state

-
$$Pr\{s_{t+1}=s', r_{t+1}=r|s_t, a_t\}$$

• State in RL approximates Markov state

- Agent-environment interface framework
- Goals, rewards, returns
- Markov property
- Markov Decision Process (MDP)
- Value functions
- Optimal value functions
- Summary

Markov Decision Process (MDP)

- Reinforcement learning task with the Markov property
- Finite MDP
 - state and action spaces are finite
- Transition probabilities

$$-P_{ss'}^{a} = Pr\{s_{t+1} = s' | s_{t} = s, a_{t} = a\}$$

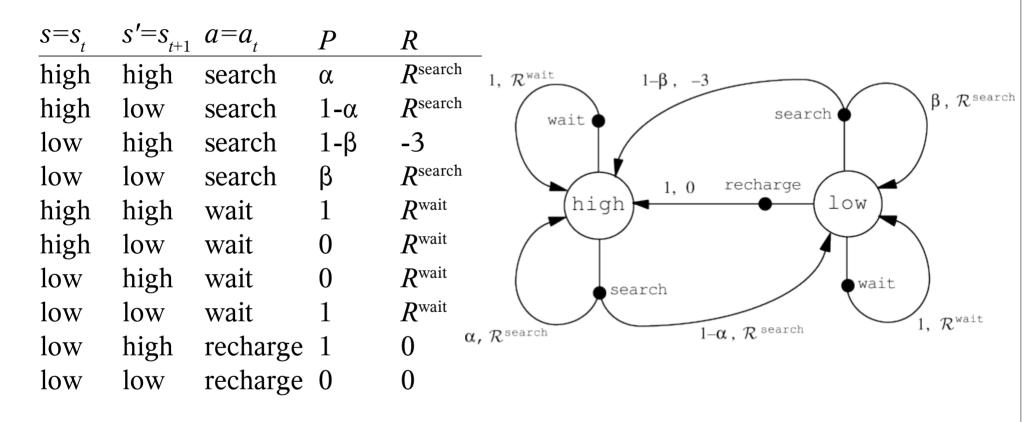
• Expected reward R

$$-R_{ss'}^{a} = E\{r_{t+1} | s_{t} = s, a_{t} = a, s_{t+1} = s'\}$$

Example: Recycling robot

- Battery state: *S*={high, low}
- Actions *A*={search, wait, recharge}
 - A(high)={search, wait}
 - A(low)={search,wait,recharge}
- Transition probabilities for states P
- Expected rewards *R*

Example: Recycling robot



transition probabilities and transition graph expected rewards

- Agent-environment interface framework
- Goals, rewards, returns
- Markov property
- Markov Decision Process (MDP)
- Value functions
- Optimal value functions
- Summary

Value functions

- Goodness of being in state (and taking action)
- Goodness is measured with expected return
- Evaluated with respect to a policy $\boldsymbol{\pi}$
- State-value function for policy π - $V^{\pi}(s) = E_{\pi}\{R_t | s_t = s\} = E_{\pi}\{\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s\}$
- Action-value function for policy π

-
$$Q^{\pi}(s, a) = E_{\pi} \{ R_t | s_t = s, a_t = a \}$$

= $E_{\pi} \{ \sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s, a_t = a \}$

Estimation of value functions

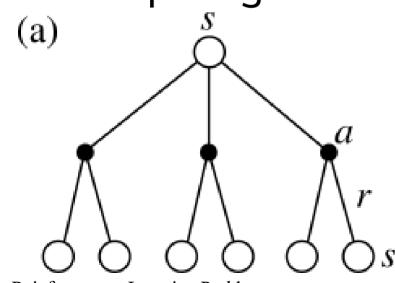
- Estimation from observations
 - Monte Carlo (MC) methods
 - average of actual returns for each state -> V
 - average of actual returns for actions in state -> Q
 - parameterized function approximations
 - compact representation

Bellman equation for value function

 Value functions hold the consistency condition $- V^{\pi}(s) = \sum \pi(s, a) \sum P^{a}_{ss'} [R^{a}_{ss'} + \gamma V^{\pi}(s')]$

(b)

- Basis for computing, approximating and learning V^{π}
- Backup diagrams for (a) V^{π} and (b) Q^{π} s,a

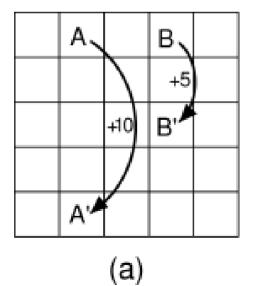


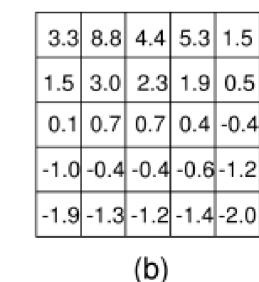
Example: Gridworld

- State: current cell
- Actions: move one cell {north, east, south, west}
- Rewards
 - -1 for trying to leave the grid, cell does not change

Actions

- +10 for leaving cell A, relocation to cell A'
- +5 for leaving cell B, relocation to cell B'





- Agent-environment interface framework
- Goals, rewards, returns
- Markov property
- Markov Decision Process (MDP)
- Value functions
- Optimal value functions
- Summary

Value functions for finite MDPs

- Partial order over policies
 - there is at least one optimal policy π^{*}
- Optimal state-value function

 $- V^*(s) = max_{\pi}V^{\pi}(s) \quad \forall s \in S$

Optimal action-value function

-
$$Q^*(s, a) = max_{\pi}Q^{\pi}(s, a) \quad \forall s \in S, a \in A$$

= $E\{r_{t+1} + \gamma V^*(s_{t+1}) | s_t = s, a_t = a\}$

Bellman optimality equations

• With π^* the value of state equals expected return with the optimal action

$$- V^{*}(s) = \max_{a \in A(s)} Q^{\pi^{*}}(s, a)$$

$$= \max_{a} E\{r_{t+1} + \gamma V^{*}(s_{t+1}) | s_{t} = s, a_{t} = a\}$$

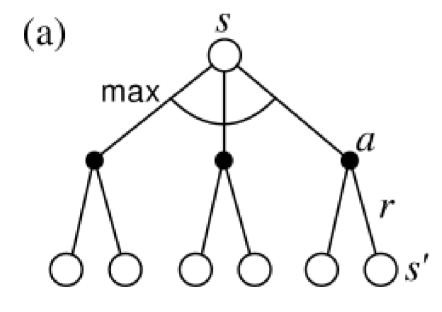
$$= \max_{a} \sum_{s'} P^{a}_{ss'} [R^{a}_{ss'} + \gamma V^{*}(s')]$$

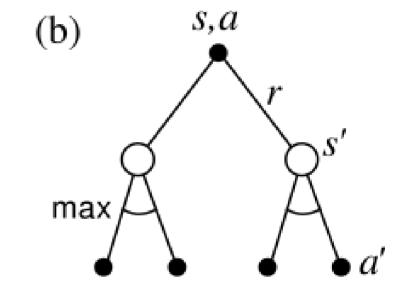
$$- Q^{*}(s, a) = E\{r_{t+1} + \gamma \max_{a'} Q^{*}(s_{t+1}, a') | s_{t} = s, a_{t} = a'$$

$$\sum_{a'} e^{a} [e^{-a} - e^{-a}] = e^{a} [e^{-a} - e^{-a}]$$

$$= \sum_{s'} P^{a}_{ss'} [R^{a}_{ss'} + \gamma \max_{a'} Q^{*}(s', a')]$$

Backup diagrams for optimal policy



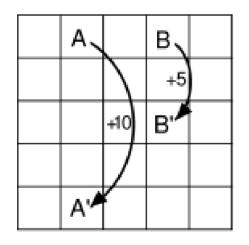


Solving Bellman optimality equation

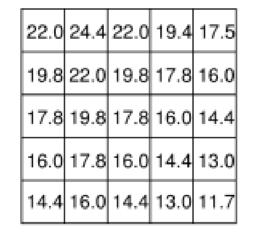
- Unique solution exists with finite MDPs
- Optimal value function brings global information to local states
 - optimal policy can be calculated in a greedy manner
- System of equations
 - N states, N unknowns in N equations
 - known dynamics $R_{ss'}^a$, $P_{ss'}^a$
 - solution from the nonlinear equations
- Explicit solutions may not be practical

Example: Gridworld

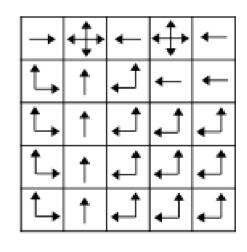
- Optimal solution to gridworld example
 - unique optimal state-value function
 - multiple optimal policies



a)	gridworld
----	-----------



b) V*



c) π*

Approximations for solving MDPs

- Heuristics
- Dynamic programming
- Observed transitions in place of expected
- Parameterized function approximations
- Concentrate on making good decisions with frequent states

Summary

- Reinforcement learning problem
 - mathematical foundation
- Interaction of the agent and the environment
 the interface defines a particular task
- Value functions, Bellman equations
 - optimal value functions, optimal policies
- Trade-off between tractability and applicability
 - approximation of the optimal value function