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 The game of Go, oldest board
game
—19 by 19
— Evaluation of
positions
— Look ahead 33 7 80,
— Rich information ‘¢ :%58°§8_
at the end i
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e “Grant Challenge” for Al

— Tree Search not practical (chess)
Result — High branching factor ~200
Further — Deep look ahead ~60

e Conventional approach
e EXpert system

 Need human for compiling
domain knowledge

« Barely above beginner level

Training
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ldeas

Network

Aim: Knowledge free

Trainiag e |dea: Position Evaluation -
EETr Network

Further « From Tesauro’s approach to
backgammon

 Based on TD( A) predictive
learning algorithm

e Tesauro’s program is trained by
self-play (champion level)

e Trained by 3 %grams
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Final state richly informative

e Score Is the sum of contribution of
each point

* Predict the fate of each point

e Conventional program adopt
certain input features ~30(Wally)

 RL approach take whatever set of

features

Training

Result
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* |Invariance helps to reduce
number of features

Result — Color reversal

Further — Reflection of the board

— Rotation

e Translation invariance
— Convolution with a weight kernel
— Each node has its own bias weight
— Convolution kernel is twice the width

Training
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Network

e Large number of games for
training

Training
Result

Further
e Criteria of training strategies

— Computational efficiency
— Quality of the play
— Coverage of plausible positions

?
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Ideas

Network :
Tesauro trains TD-Gammon by

Training self-playing
Result  Go Is a deterministic game

Further e Self-training risks staying In
suboptimal state

* Theoretically won't happen but it
IS @ concern In practice

o Solution: Use Gibbs sampling to
bring In randomness
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o Self-training alone not suitable
Training — Computationally intensive
— Sluggish bootstrap out of ignorance

| « Use 3 computer opponents for
Further tra'ning

— Random move generator
— Public-domain program — Wally

— Commercial program — The Many
Faces of Go

 The 2 programs are also used as
measurement of the network

y
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Training

Ideas

Network e Random move generator

Training — Low quallty but fast
— Effective to prime the network at the
Result beginning
e Public-domain program — Wally
— Slow and deterministic
— Modified to include random moves
— Randomness is reduced as network
improves
« Commercial program — The Many
Faces of Go

— Use different standard Go handicaps to
match the strength of the network

Further
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ldeas

Network .
 Many networks are trained

Training ~ with different methods

— « A 9 by 9 network is trained
Further through 3000 games to beat
Many Faces (low level)

 The learned weight kernel
offers a suitable biases for full-
sized network

r’%
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ldeas

4 | r
— « Comparison between self-training

Training and against WaIIy
— Similar at the beginning

| — The later over-perform the former
Further soon

— After 2000 games, overfit Wally and
worsen against Many Faces

— S0 the training partner is Many Faces
after the agent reliably beats Wally
~1000 games

— The self-training network edge-
passes Wally in 3000 games
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* In general the network Is more
competent at the opening than

Result further into the game

Further —

Reinforcement information did
oropagate back from the final
DOSItion

Hard to capture the multiplicity of
mid-game and complex of end-game

e Suggest hybrid approaches could

be better
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Further

Further

e Adjust the input representation
to a full translation- invariant
network

e Train network on records of

human players available on
Internet

?
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Thank you.

Result

Further

Questions?
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