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Background

• The game of Go, oldest board 
game
– 19 by 19
– Evaluation of

positions
– Look ahead
– Rich information

at the end
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Background

• “Grant Challenge” for AI
– Tree Search not practical (chess)
– High branching factor ~200
– Deep look ahead ~60

• Conventional approach
• Expert system
• Need human for compiling 

domain knowledge
• Barely above beginner level
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Ideas

• Aim: Knowledge free
• Idea: Position Evaluation -

Network
• From Tesauro’s approach to 

backgammon
• Based on TD(λ) predictive 

learning algorithm
• Tesauro’s program is trained by 

self-play (champion level)
• Trained by 3 programs
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Network Architecture

• Final state richly informative
• Score is the sum of contribution of 

each point
• Predict the fate of each point
• Conventional program adopt 

certain input features ~30(Wally)
• RL approach take whatever set of 

features
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Network Architecture

• Invariance helps to reduce 
number of features
– Color reversal
– Reflection of the board
– Rotation

• Translation invariance
– Convolution with a weight kernel
– Each node has its own bias weight
– Convolution kernel is twice the width
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Network Architecture

• Your own entry goes here. 



Background

Ideas

Network

Training

Result

Further

Training Strategies

• Large number of games for 
training

• Criteria of training strategies
– Computational efficiency
– Quality of the play
– Coverage of plausible positions
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Training Strategies

• Tesauro trains TD-Gammon by 
self-playing

• Go is a deterministic game
• Self-training risks staying in 

suboptimal state
• Theoretically won't happen but it 

is a concern in practice
• Solution: Use Gibbs sampling to 

bring in randomness
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Training Strategies

• Self-training alone not suitable
– Computationally intensive
– Sluggish bootstrap out of ignorance

• Use 3 computer opponents for 
training
– Random move generator
– Public-domain program – Wally
– Commercial program – The Many 

Faces of Go
• The 2 programs are also used as 

measurement of the network
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Training Strategies

• Random move generator
– Low quality but fast
– Effective to prime the network at the 

beginning
• Public-domain program – Wally

– Slow and deterministic
– Modified to include random moves
– Randomness is reduced as network 

improves 
• Commercial program – The Many 

Faces of Go
– Use different standard Go handicaps to 

match the strength of the network
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Result

• Many networks are trained 
with different methods

• A 9 by 9 network is trained 
through 3000 games to beat 
Many Faces (low level)

• The learned weight kernel 
offers a suitable biases for full-
sized network
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Result

• Comparison between self-training 
and against Wally
– Similar at the beginning 
– The later over-perform the former 

soon
– After 2000 games, overfit Wally and 

worsen against Many Faces
– So the training partner is Many Faces

after the agent reliably beats Wally 
~1000 games

– The self-training network edge-
passes Wally in 3000 games
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Discussion

• In general the network is more 
competent at the opening than 
further into the game
– Reinforcement information did 

propagate back from the final 
position

– Hard to capture the multiplicity of 
mid-game and complex of end-game

• Suggest hybrid approaches could 
be better 
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Further Improvements

• Adjust the input representation 
to a full translation- invariant 
network

• Train network on records of 
human players available on 
Internet
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Thank you.

Questions?


