Nash Q-Learning for General-Sum Stochastic Games

Hu, J. and Wellman, M.P.

Lauri Lyly, llyly@cc.hut.fi

Stochastic general-sum games

- Stochasticity: Environment is in part formed by other agents
 - nondeterministic, noncooperative nature, no agreements
- Arbitrary relation between agents' rewards
 - Extends last time's topic zero-sum

Nash Equilibrium

- Best-response joint strategy
- Study limited to stationary strategies (policies)
- Rewards of others are perceived, strategies are not

Nash Q-Values

$$Q_*^i(s, a^1, \dots, a^n) = r^i(s, a^1, \dots, a^n) + \beta \sum_{s' \in S} p(s'|s, a^1, \dots, a^n) v^i(s', \pi_*^1, \dots, \pi_*^n)$$

	Multiagent	Single-Agent
Q-function	$Q(s, a^1, \ldots, a^n)$	Q(s,a)
"Optimal"	Current reward + Future rewards	Current reward + Future rewards
Q-value	when all agents play speci-	by playing the optimal strat-
	fied Nash equilibrium strategies	egy from the next period onward
	from the next period onward	

Definitions of Q-values

Stage game

One-period game as opposed to stochastic

Let σ^{-k} be the product of strategies of all agents other than k, $\sigma^{-k} \equiv \sigma^1 \cdots \sigma^{k-1} \cdot \sigma^{k+1} \cdots \sigma^n$.

- Mainly used in convergence proof
- Nash equilibrium for the stage game. M is a "payoff function":

$$\sigma^k \sigma^{-k} M^k \ge \hat{\sigma}^k \sigma^{-k} M^k$$
 for all $\sigma^k \in \hat{\sigma}(A^k)$.

Update rule

- Same update rule for agent itself and its conjecture on other agent's Q-functions
- Q-functions can be initialized for example to 0
- Asynchronous updating: only entries pertaining to current state are updated

$$Q_{t+1}^{i}(s, a^{1}, \dots, a^{n}) = (1 - \alpha_{t}) Q_{t}^{i}(s, a^{1}, \dots, a^{n}) + \alpha_{t} [r_{t}^{i} + \beta Nash Q_{t}^{i}(s')]$$

$$NashQ_t^i(s') = \pi^1(s') \cdots \pi^n(s') \cdot Q_t^i(s')$$

The Nash Q-learning algorithm

```
Initialize:
   Let t = 0, get the initial state s_0.
   Let the learning agent be indexed by i.
   For all s \in S and a^j \in A^j, j = 1, ..., n, let Q_t^j(s, a^1, ..., a^n) = 0.
Loop
   Choose action a_t^i.
   Observe r_t^1, ..., r_t^n; a_t^1, ..., a_t^n, and s_{t+1} = s'
   Update Q_t^j for j = 1, ..., n
      Q_{t+1}^{j}(s, a^{1}, \dots, a^{n}) = (1 - \alpha_{t}) Q_{t}^{j}(s, a^{1}, \dots, a^{n}) + \alpha_{t}[r_{t}^{j} + \beta NashQ_{t}^{j}(s')]
      where \alpha_t \in (0,1) is the learning rate, and NashQ_t^k(s') is defined in (7)
   Let t := t + 1.
```

Convergence proof requirements

- Assumption 1: Every state-action tuple is visited infinitely often
- Assumption 2: Learning rate alpha(t) satisfies:
 - Sum from goes towards infinity
 - Squared sum does not
 - alpha = 0 if the element being updated doesn't correspond to current state-action tuple (asynchronous updating)

Proof basis and result

 Q-learning process updated by pseudo-contraction operator using the usual form:

```
Q=(1-alpha(t))Q(t)+alpha(t)[P(t)Q(t)]
```

Contraction: Values approach optimal Q

- Link between stage games and stochastic games
- Goal: Show that NashQ is a pseudo-contraction operator
- Actually a real contraction operator in restricted conditions
 - Game with special types of Nash equilibrium points

Different Nash equilibria

Global optimal point using stage game notation

$$\sigma M^k \ge \hat{\sigma} M^k$$
 for all $\hat{\sigma} \in \sigma(A)$.

Saddle point

$$\sigma^k \sigma^{-k} M^k \geq \hat{\sigma}^k \sigma^{-k} M^k \quad \text{for all } \hat{\sigma}^k \in \sigma(A^k),$$

$$\sigma^k \sigma^{-k} M^k \leq \sigma^k \hat{\sigma}^{-k} M^k \quad \text{for all } \hat{\sigma}^{-k} \in \sigma(A^{-k})$$

All equilibria chosen for update must be same type

Stage games compared

Global optimal point (*Up*, *Left*)

(Q_t^1,Q_t^2)	Left	Right
Up	10, 9	0, 3
Down	3, 0	-1, 2

Saddle point (*Down*, *Right*)

(Q_*^1, Q_*^2)	Left	Right
Up	5, 5	0, 6
Down	6, 0	2, 2

Figure 2: Two stage games with different types of Nash equilibria

Experimentation framework

Two grid-world games

 Motivation for grid games: state-specific actions, qualitative transitions, immediate and long-term rewards

Learning process

- Violates assumption 3 of monotonic selection of global optima or saddle points.
- Still converges in most cases regardless of selection
- Offline and online learning rated separately

LEARNING STRATEGY		RESULTS OF LEARNING
AGENT 1	AGENT 2	PERCENT THAT REACH A NASH EQUILIBRIUM
SINGLE	SINGLE	20%
SINGLE	FIRST NASH SECOND NASH	60% 50%
	BEST EXPECTED NASH	76%
FIRST NASH	SECOND NASH	60%
	BEST EXPECTED NASH	76%
SECOND NASH	BEST EXPECTED NASH	84%
BEST EXPECTED NASH	BEST EXPECTED NASH	100%
FIRST NASH	FIRST NASH	100%
SECOND NASH	SECOND NASH	100%

Table 11: Learning performance in Grid Game 1

Conclusions

- No current method provides performance guarantees for general-sum stochastic games
- Works as a starting point
 - Other promising variants
 - Nash equilibrium itself can be refined

References

• [7] Hu, J. and Wellman, M.P. (2003). Nash Q-Learning for General-Sum Stochastic Games. Journal of Machine Learning Research 4:1039–1069.