Markov games as a
framework for multi-agent
reinforcement learning
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Definition

Markov decision process (MDP)

States S, Actions A -

Transtion Action function T :SxA— PD
/

v

Reward Funtion R:SxA
Agent’s objective: Maximize
v -

w

: -
Discount factc
-



Markov Game (stochastic game)
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When there are only two agents

Agent -

Action set S



Optimal Policies

Optimal Policies: the one that maximizes the
expected sum of discounted reward and is undominated
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policy can achieve a better expected sum of discoun
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Every MDP has at least one optimal pO|I ) |



Finding Optimal Policies

Matrix Games

Agent
rock paper  scissors
rock 0 | -1
Opponent paper -1 0 |
SCISSOTS 1 -1 0

4 _" -
Tpaper —  Tscissors >V (vs. rock)
— Trock + Tscissors Z Vv (VS- Paper)
Trock —  Tpaper >V (vs. SCisSsors)
P Trock T T paper +  Tscissors =1
o 4 [

V = max min Ry a7y,
/ TEPD(A) 0€O ’
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MDP’s

value iteration

value of a state

=g

quality of a state-action pair
> - -
o P '/ -
| Q(s,a) = R(s,a) +7 ) T(s,a,5)V(s)
s'esS

V(s) = max Q(s, a')
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Markov Games

Q(s,a,0) = R(s,a,o0) +7ZT(S, a,0,s V(s
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Learning Optimal Policies

Value iteration is traditionally used

In this Q-learning formulation, the updates are

synchronously performed without the use of the e
transition function, T. -
Q(s,a) == r+V(s')

o
performed whenever it receives a reward o}'/
when making a transition f or?éo S’ a;ft}t'
taking action a. -

every action Is tried In



Initialize:

ForallsemS,amA and omoO,

LetQ[s,a,0] := 1
Forall s n S,

LetV[s] := 1
ForallsmmS,amaA,
letpils,a] := 1/|A]
Letalpha := 1.0

Choose an action:

With probability explor, return an action uniformly at random.
Otherwise, 1f current state 1s s,
Return action a with probabilitypi [s,a].

Learn:

After recerving reward rew for moving from state s to s’
via action a and opponent’s action o,

LetQ[s,a,0] := (l-alpha) * Q[s,a,o] + alpha * (rew + gamma * V[s’'])
Use linear programming to find pi [s, .] such that:

pils,.] := argmax{pi’[s,.], min{o’, sum{a’, pils,a’] * Qls,a’,o’']1}}}
LetV[s] := min{o’, sum{a’, pi[s,a’] * Q[s,a’,o’]}}

Let alpha := alpha * decay

Fieure 1: The minimax-Q algorithm.




Example




vs. random

vs. hand-built

» vs. MR-challenger
~ vs. MM-challenger

vs. QR-challenger
vs. QQ-challenger

MR MM
% won games | %owon games | %owon games | % won games
993 6500 [ 993 7200 | 994 11300 99.5 8600
481 4300 | 537 5300 26.1 14300 76.3 3300
350 4300
375 4400
0.0 5500




Conclusion

@ linear programming IS somewhat
problematic

@the minimax operator can be implemented
extremely efficiently In some games

@ Applying of cooperative and multi-player
games could also prove fruitful
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