Markov games as a
framework for multi-agent
reinforcement learning

Yongnan Ji
"
- - 4 '/

- // -

@ Definitions

@ Optimal Policies

@ Learning Ofptirﬁal P

»

@ An Example

Definition

Markov decision process (MDP)

States S, Actions A -

Transtion Action function T :SxA— PD
/

v

Reward Funtion R:SxA
Agent’s objective: Maximize
v -

w

: -
Discount factc
-

Markov Game (stochastic game)

-

When there are only two agents

Agent -

Action set S

Optimal Policies

Optimal Policies: the one that maximizes the
expected sum of discounted reward and is undominated

-

policy can achieve a better expected sum of discoun

S t
)
Every MDP has at least one optimal pO|I) |

Finding Optimal Policies

Matrix Games

Agent
rock paper scissors
rock 0 | -1
Opponent paper -1 0 |
SCISSOTS 1 -1 0

4 _" -
Tpaper — Tscissors >V (vs. rock)
— Trock + Tscissors Z Vv (VS- Paper)
Trock — Tpaper >V (vs. SCisSsors)
P Trock T T paper + Tscissors =1
o 4 [

V = max min Ry a7y,
/ TEPD(A) 0€O ’

acA
/ 4

MDP’s

value iteration

value of a state

=g

quality of a state-action pair
> - -
o P '/ -
| Q(s,a) = R(s,a) +7) T(s,a,5)V(s)
s'esS

V(s) = max Q(s, a')

e
\

_—

-

_

Markov Games

Q(s,a,0) = R(s,a,o0) +7ZT(S, a,0,s V(s

&

- e g ll
» - -
> Vi(s) = WEIESE{A) Eélcr)l Z Q(s,a,0)m,,
v acA

-

N
g

-

-«

'

Learning Optimal Policies

Value iteration is traditionally used

In this Q-learning formulation, the updates are

synchronously performed without the use of the e
transition function, T. -
Q(s,a) == r+V(s')

o
performed whenever it receives a reward o}'/
when making a transition f or?éo S’ a;ft}t'
taking action a. -

every action Is tried In

Initialize:

ForallsemS,amA and omoO,

LetQ[s,a,0] := 1
Forall s n S,

LetV[s] := 1
ForallsmmS,amaA,
letpils,a] := 1/|A]
Letalpha := 1.0

Choose an action:

With probability explor, return an action uniformly at random.
Otherwise, 1f current state 1s s,
Return action a with probabilitypi [s,a].

Learn:

After recerving reward rew for moving from state s to s’
via action a and opponent’s action o,

LetQ[s,a,0] := (l-alpha) * Q[s,a,o] + alpha * (rew + gamma * V[s’'])
Use linear programming to find pi [s, .] such that:

pils,.] := argmax{pi’[s,.], min{o’, sum{a’, pils,a’] * Qls,a’,o’']1}}}
LetV[s] := min{o’, sum{a’, pi[s,a’] * Q[s,a’,o’]}}

Let alpha := alpha * decay

Fieure 1: The minimax-Q algorithm.

Example

vs. random

vs. hand-built

» vs. MR-challenger
~ vs. MM-challenger

vs. QR-challenger
vs. QQ-challenger

MR MM
% won games | %owon games | %owon games | % won games
993 6500 [993 7200 | 994 11300 99.5 8600
481 4300 | 537 5300 26.1 14300 76.3 3300
350 4300
375 4400
0.0 5500

Conclusion

@ linear programming IS somewhat
problematic

@the minimax operator can be implemented
extremely efficiently In some games

@ Applying of cooperative and multi-player
games could also prove fruitful

=4

	Markov games as a framework for multi-agent reinforcement learning
	Definition
	Optimal Policies
	Finding Optimal Policies
	Learning Optimal Policies
	Example
	Conclusion

