Markov games as a framework for multi-agent reinforcement learning

Yongnan Ji

Definitions Optimal Policies Finding Optimal Policies Learning Optimal Policies An Example

Definition

Markov decision process (MDP)

States S, Actions A

Transtion Action function $T: S \times A \rightarrow PD(S)$

Reward Funtion

 $R: S \times A \to \mathbf{R}$

Agent's objective: Maximize

Discount factor

Markov Game (stochastic game)

States S, Actions A_1, A_2, \ldots, A_k ,

Transtion Action function $T: S \times A_1 \times A_2 \dots \times A_k \rightarrow PD(S)$

Reward Function $R_i: S \times A_1 \times A_2 \dots \times A_k \to \mathbb{R}$

Agent's objective: Maximize

$$E\{\sum_{j=0}^{\infty}\gamma^{j}r_{i,t+j}\}$$

When there are only two agents

Agent Action set S Opponent Action set *O*

Reward

R(s,a,o)

Optimal Policies

Optimal Policies: the one that maximizes the expected sum of discounted reward and is undominated

Undominated: that there is no state from which any other policy can achieve a better expected sum of discounted reward.

Every MDP has at least one optimal policy and of the optimal policies for a given MDP, at least one is *stationary* and *deterministic*.

Finding Optimal Policies

Matrix Games

$$V = \max_{\pi \in \mathrm{PD}(A)} \min_{o \in O} \sum_{a \in A} R_{o,a} \pi_a,$$

MDP's

value iteration

value of a state

V(s)

quality of a state-action pair Q(s,a)

$$Q(s, a) = R(s, a) + \gamma \sum_{s' \in S} T(s, a, s') V(s')$$
$$V(s) = \max_{a' \in A} Q(s, a')$$

Markov Games

$$Q(s, a, o) = R(s, a, o) + \gamma \sum_{s'} T(s, a, o, s') V(s')$$

$$V(s) = \max_{\pi \in PD(A)} \min_{o \in O} \sum_{a \in A} Q(s, a, o) \pi_a,$$

Learning Optimal Policies

Value iteration is traditionally used

In this Q-learning formulation, the updates are synchronously performed without the use of the transition function, *T*.

$$Q(s,a) := r + \gamma V(s')$$

performed whenever it receives a reward of r when making a transition from s to s' after taking action a.

every action is tried in every state infinitely often

T '.' 1'
Initialize:
For all s in S , a in A , and o in O ,
Let $Q[s,a,o] := 1$
For all s in S,
Let $V[s] := 1$
For all s in S, a in A,
Let $pi[s,a] := 1/ A $
Let alpha := 1.0
Choose an action:
With probability explor, return an action uniformly at random.
Otherwise, if current state is s,
Return action a with probability pi [s, a].
Learn:
After receiving reward rew for moving from state s to s'
via action a and opponent's action \circ ,
LetQ[s,a,o] := (1-alpha) * Q[s,a,o] + alpha * (rew + gamma * V[s'])
Use linear programming to find pi[s,.] such that:
pi[s,.] := argmax{pi'[s,.], min{o', sum{a', pi[s,a'] * Q[s,a',o']}}}
Let $V[s] := min\{o', sum\{a', pi[s,a'] * Q[s,a',o']\}\}$
Let alpha := alpha * decay

Figure 1: The minimax-Q algorithm.

Example

Discount factor 0.9

Results

	MR		MM		QR		QQ	
	% won	games						
vs. random	99.3	6500	99.3	7200	99.4	11300	99.5	8600
vs. hand-built	48.1	4300	53.7	5300	26.1	14300	76.3	3300
vs. MR-challenger	35.0	4300						
vs. MM-challenger			37.5	4400				
vs. QR-challenger					0.0	5500		
vs. QQ-challenger							0.0	1200

Conclusion

Inear programming is somewhat problematic • the minimax operator can be implemented extremely efficiently in some games Applying of cooperative and multi-player games could also prove fruitful