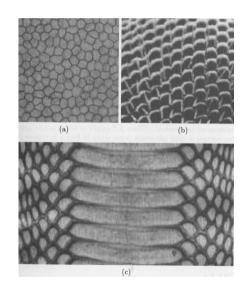

#### Analysis of Texture


• Random textures in biomedical images

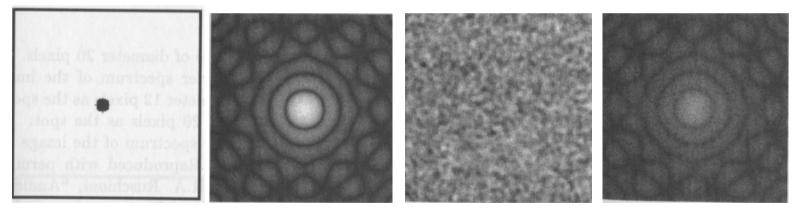


(a) Liver/parenchyma cluster(b) Kidney (c) Spine (d) Lung



Oriented texture: mammograms




(a) Edothelia cells in cornea(b) drosophila's eye (c) Skin of cobra

#### 15/03/2005

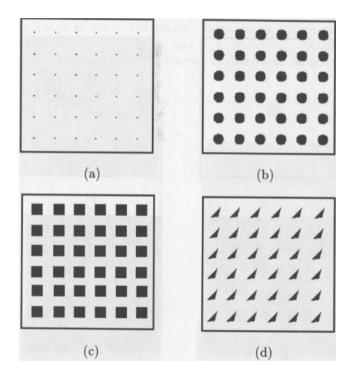
Analysis of Texture - Schleimer & Veisterä

#### Texture Modelling (Random)

• Convolve spot or spots of a certain shape with a random field of white noise



Circle diameter=12 pixel


FFT of the pixel (texon)

Convolution of white noise with circle

FFT of the whole texture

#### Texture Modelling (Ordered)

- Convolve texture patch (texton) with a field of (quasi-) periodic impulses
- Oriented textons are possible
- Spectral Properties of the texton would be seen in FFT



(a) Position determined by Diracs (b) circular texon (c) square texon (d) triangle texon (oriented)

#### Statistical Analysis of Texture

- Moments of the gray-level Probability Distribution Function (PDF)
- $k^{\text{th}}$  central moment of the PDF p(l) is

$$m_k = \sum_{l=0}^{L-1} \left( l - \boldsymbol{m} \right)^k p(l)$$

where l=0,1,2,...,L-1 are the gray levels in the image *f*, and **m** is the mean gray level

#### **Central Moments**

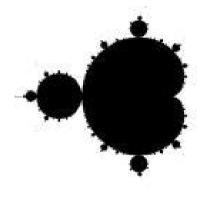
- Serve as one descriptor for the whole image (no spatial information)
- $m_2$  is the variance of the gray levels and serves as a measure of inhomogeneity
- skewness =  $m_3/(m_2)^{3/2}$  indicates asymmetry
- kurtosis =  $m_4/(m_2)^2$  indicates uniformity
- Skewness of mammograms was found to be useful in predicting risk of development of breast cancer

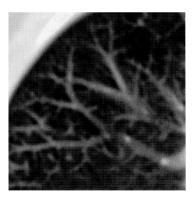
# Gray-level co-occurance matrix (GCM)

- Commonly used statistical measure of texture proposed by Haralick et al.
- GCM  $P_{(d,q)}(l_1, l_2)$  represents the propability of occurrence of a pair of gray-levels  $(l_1, l_2)$ separated by a given distance *d* at angle *q*
- Commonly for unit pixel distances and the four angles 0°, 45°, 90° and 135°.

#### GCM example

| Current Pixel | Next Pixel Below |    |    |   |    |    |    |   |
|---------------|------------------|----|----|---|----|----|----|---|
|               | 0                | 1  | 2  | 3 | 4  | 5  | 6  | 7 |
| 0             | 0                | 3  | 4  | 1 | 0  | 1  | 0  | 0 |
| 1             | 6                | 44 | 10 | 9 | 5  | 1  | 0  | 0 |
| 2             | 3                | 13 | 13 | 5 | 8  | 3  | 1  | 0 |
| 3             | 1                | 5  | 11 | 5 | 3  | 5  | 2  | 0 |
| 4             | 0                | 1  | 5  | 7 | 5  | 9  | 3  | 0 |
| 5             | 0                | 0  | 1  | 5 | 11 | 10 | 4  | 0 |
| 6             | 0                | 0  | 0  | 0 | 2  | 3  | 10 | 1 |
| 7             | 0                | 0  | 0  | 0 | 0  | 0  | 0  | 1 |


GC Matrix for d=1 and  $q=270^{\circ}$ .


#### Haralick's measures of texture

- Normalized GCMs are used to define image features *F*, for example
  - $-F_1$  energy (homogeneity)
  - $-F_2$  contrast
  - $-F_8$  entropy (randomness)
  - $-F_{14}$  maximal correlation
- Features used, for example, to distinguish malignant tumours and image classification

#### Fractal Analysis

- Pattern composed of repeated occurrences of a basic unit at multiple scales of detail (Mandelbrot set).
- Fractal dimension
  - relationship between measured length and the measuring unit.
  - quantifies how a pattern fills space. Pattern of increasing irregularity/roughness have greater fractal dimension *d<sub>f</sub>*.
  - 1 for straight line, 2 for circle and 3 for sphere





Example: Bronchial tree

# Methods for estimating fractal dimension

- Relative dispersion
  - Ratio of standard deviation to the mean using varying number of samples
- Intensity difference measure
- Surface area measure (box-counting)
- Hurst coefficient:  $d_f = d_E + 1 H$

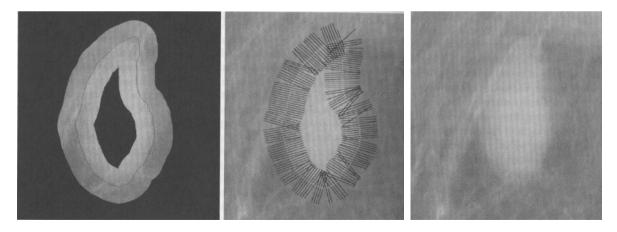
#### Fractional Brownian Motion

- Brownian motion model
  - Expectation of the differences between signal values is  $E[|f(\mathbf{h} + \Delta \mathbf{h}) - f(\mathbf{h})|] = |\Delta \mathbf{h}|^{H}$
- The psd of a Brownian motion model follows the power law commonly encountered in biological signals.
- Estimation of *d<sub>f</sub>* by approximating expectation with sample mean.
- Machine Learning: Gaussian Process with special Covariance Matrix (parametric estimates possible?).

### Applications of fractal analysis

- Benign masses have low fractal dimension then malignant tumors.
- Classification
- Segmentation
- Generally better results than GCM features, fourier spectral features, gray-level difference statistics and Law's texture energy
- Has a connection to the generation of biological pattern by means of reaction-diffusion system.

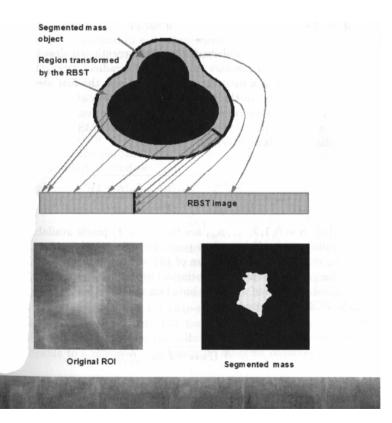
#### Structural Analysis


- Statistical methods are suitable for analysis of random or fine texture
- Structural methods are more suited for analysis of large-scale motifs and multitextured images
- Requires image segmentation

#### Structural Analysis Methods

- Find image textons and their placement maps
  - Describe textures in terms of texture elements and their arrangement from edge repetition data
  - Texture units in terms of 8-connected neighbours
  - Texture primitives assumed to appear as regions of connected pixels
  - Gabor filters
  - Multiple scale methods
  - Homomorphic deconvolution

### Application


- Analysis of Breast Masses
- Problem: Malignant breast lesions permeate larger areas than apparent on mammograms (infiltration) →large inter-observer variations
- Define a ribbon of uncertainty



Analysis of Texture - Schleimer & Veisterä

#### Application

- Map the ribbon to rectangular image
- Apply Texture Analysis



#### Summary

- In practice you need to use combinations of several methods
- Still an active field of study
- More in chapters 8, 9 and 12.