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Joint Entropy

Joint entropy of X,Y is:

H(X,Y)= )  P(xy)log
ryeAx Ay

P(z,y)

Entropy is additive for independent random variables:

H(X,Y)=H(X)+ H(Y) iff P(x,y) = P(x)P(y)




Conditional Entropy

Conditional entropy of X given Y is:

H(X|Y) = ZP ZP:c|ylogP Z P:cylogp

yEAy rEAx yeAx Ay

It measures the average uncertainty (i.e. information content) that

remains about x when y is known.




Mutual Information

Mutual information between X and Y is:
I(V; X)=I(X;Y)=H(X)-H(X|Y)>0

It measures the average reduction in uncertainty about x that

results from learning the value of y, or vice versa.

Conditional mutual information between X and Y given Z is:

[(Y;X|Z)=H(X|Z)— H(X|Y, Z)




Breakdown of Entropy

Entropy relations:

H(X.Y)
HX)

H(XY)

Chain rule of entropy:

HX,Y)=HX)+ HY|X)=HY)+ HX|Y)




Noisy Channel: Overview

e Real-life communication channels are hopelessly noisy i.e.
introduce transmission errors
e However, a solution can be achieved

— the aim of source coding is to remove redundancy from the

source data

— the aim of channel coding is to make a noisy channel behave

like a noiseless one via controlled adding of redundancy




Noisy Channel: Overview (Cont.)
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Noisy Channels

e General discrete memoryless channel is characterized by:
— input alphabet Ax
— output alphabet Ay
— set of conditional probability distributions P(y|x), one for each

x e Ax

e These transition probabilities can be written in a matrix form:

Qji = Py = bjlz = a;)




Noisy Channels: Useful Models

Binary symmetric chanmel Ay ={0,1} Ay

Pl[y=0|r=ﬂ}
P(y=1|r=ﬂ}

Binary erasure chanmel. 4y ={0,1} 4y-={0,7,1}

UEU Fly=0|r=10) 1-—f;

r ) P(y='?|r=ﬂ} £
e, Ply=1|r=n0) 0,

Z channel. 4y =70,1} dy=7{0,1}

P[y=ﬂ|r=ﬂ}
Pl::y=1|r=ﬂ:'1
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Inferring Channel Input

e If we receive symbol y, what is the probability of input symbol 27

e Let’s use the Bayes’ theorem:

_ P(ylz)P(z) _ Pylz)P(z)
P = ="p) T S, Pl P@)

Example: a Z-channel has f = 0.15 and the input probabilities (i.e.
ensemble) p(x = 0) = 0.9, p(x = 1) = 0.1. If we observe y = 0,

0.15%0.1
Ple=1ly=0))= 15 0111209 ~ 026
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Information Transmission over a Channel

e What is a suitable measure for transmitted information?

e Given what we know, the mutual information I(X;Y") between
the source X and the received signal Y is sufficient

— remember that:
I(V;X)=I1I(X;Y)=H(X)—- HX|Y)
= the average reduction in uncertainty about x that results from

learning the value of y, or vice versa.

— on average, y conveys information about z if H(X|Y) < H(X)
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Information Transmission over a Channel (Cont.)

e In real life, we are interested in communicating over a channel

with a negligible probability of error

e How can we combine this idea with the mathematical expression

of conveyed information, it i.e.

I[(X;Y)=H(X) - HX|Y)

e Often it is more convenient to calculate mutual information as

[(X;Y)=H(Y)- HY|X)
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Information Transmission over a Channel (Cont.)

e Mutual information between the input and the output depends

on the input ensemble Px

e Channel capacity is defined as the maximum of its mutual

information

e The optimal input distribution maximizes mutual information

ClQ) =max I(X;Y)
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Binary Symmetric Channel Mutual Information

I I I I I I I I I
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p(x=1)

I(X;Y) for a binary symmetric channel with f = 0.15 as a function of

input distribution
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Noisy Channel Coding Theorem

e It seems plausible that channel capacity C' can be used as a

measure of information conveyed by a channel

e What is not so obvious:
Shannon’s noisy channel coding theorem (pt.1):
All discrete memoryless channels have non-negative capacity C. For
any € > 0 and R < C, for large enough N, there exists a block code of
length N and rate > R and a decoding algorithm, such that the

maximal probability of block error is < €
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Proving the Noisy Channel Coding Theorem

Let’s consider Shannon’s theorem and a noisy typewriter channel:
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Proving the Noisy Channel Coding Theorem
(Cont.)

e (Comnsider next extended channels:

— corresponds to N uses of a single channel (block codes)

— an extended channel has |A;|" possible inputs x and |A, |V

possible outputs

o If N is large, x is likely to produce outputs only in a small subset

of the output alphabet

— extended channel looks a lot like a noisy typewriter
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Example: an Extended Z-channel

Tpical ¥ for a given trpical x
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Homework

e 8.10: mutual information

e 9.17: channel capacity
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