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Joint Entropy

Joint entropy of X, Y is:

H(X, Y ) =
∑

xy∈AXAY

P (x, y) log
1

P (x, y)

Entropy is additive for independent random variables:

H(X, Y ) = H(X) + H(Y ) iff P (x, y) = P (x)P (y)
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Conditional Entropy

Conditional entropy of X given Y is:

H(X|Y ) =
∑

y∈AY

P (y)

[

∑

x∈AX

P (x|y) log
1

P (x|y)

]

=
∑

y∈AXAY

P (x, y) log
1

P (x|y)

It measures the average uncertainty (i.e. information content) that

remains about x when y is known.
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Mutual Information

Mutual information between X and Y is:

I(Y ; X) = I(X; Y ) = H(X) − H(X|Y ) ≥ 0

It measures the average reduction in uncertainty about x that

results from learning the value of y, or vice versa.

Conditional mutual information between X and Y given Z is:

I(Y ; X|Z) = H(X|Z) − H(X|Y, Z)
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Breakdown of Entropy

Entropy relations:

Chain rule of entropy:

H(X, Y ) = H(X) + H(Y |X) = H(Y ) + H(X|Y )
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Noisy Channel: Overview

• Real-life communication channels are hopelessly noisy i.e.

introduce transmission errors

• However, a solution can be achieved

– the aim of source coding is to remove redundancy from the

source data

– the aim of channel coding is to make a noisy channel behave

like a noiseless one via controlled adding of redundancy
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Noisy Channel: Overview (Cont.)
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Noisy Channels

• General discrete memoryless channel is characterized by:

– input alphabet AX

– output alphabet AY

– set of conditional probability distributions P (y|x), one for each

x ∈ AX

• These transition probabilities can be written in a matrix form:

Qj|i = P (y = bj |x = ai)
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Noisy Channels: Useful Models
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Inferring Channel Input

• If we receive symbol y, what is the probability of input symbol x?

• Let’s use the Bayes’ theorem:

P (x|y) =
P (y|x)P (x)

P (y)
=

P (y|x)P (x)
∑

x′ P (y|x′)P (x′)

Example: a Z-channel has f = 0.15 and the input probabilities (i.e.

ensemble) p(x = 0) = 0.9, p(x = 1) = 0.1. If we observe y = 0,

P (x = 1|y = 0)) =
0.15 ∗ 0.1

0.15 ∗ 0.1 + 1 ∗ 0.9
= 0.26
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Information Transmission over a Channel

• What is a suitable measure for transmitted information?

• Given what we know, the mutual information I(X; Y ) between

the source X and the received signal Y is sufficient

– remember that:

I(Y ; X) = I(X; Y ) = H(X) − H(X|Y )

= the average reduction in uncertainty about x that results from

learning the value of y, or vice versa.

– on average, y conveys information about x if H(X|Y ) < H(X)
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Information Transmission over a Channel (Cont.)

• In real life, we are interested in communicating over a channel

with a negligible probability of error

• How can we combine this idea with the mathematical expression

of conveyed information, it i.e.

I(X; Y ) = H(X) − H(X|Y )

• Often it is more convenient to calculate mutual information as

I(X; Y ) = H(Y ) − H(Y |X)
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Information Transmission over a Channel (Cont.)

• Mutual information between the input and the output depends

on the input ensemble PX

• Channel capacity is defined as the maximum of its mutual

information

• The optimal input distribution maximizes mutual information

C(Q) = max
PX

I(X; Y )
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Binary Symmetric Channel Mutual Information
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Noisy Channel Coding Theorem

• It seems plausible that channel capacity C can be used as a

measure of information conveyed by a channel

• What is not so obvious:

Shannon’s noisy channel coding theorem (pt.1):

All discrete memoryless channels have non-negative capacity C. For

any ε > 0 and R < C, for large enough N , there exists a block code of

length N and rate ≥ R and a decoding algorithm, such that the

maximal probability of block error is < ε
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Proving the Noisy Channel Coding Theorem

Let’s consider Shannon’s theorem and a noisy typewriter channel:

17



Proving the Noisy Channel Coding Theorem
(Cont.)

• Consider next extended channels:

– corresponds to N uses of a single channel (block codes)

– an extended channel has |Ax|
N possible inputs x and |Ay|

N

possible outputs

• If N is large, x is likely to produce outputs only in a small subset

of the output alphabet

– extended channel looks a lot like a noisy typewriter
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Example: an Extended Z-channel

19



Homework

• 8.10: mutual information

• 9.17: channel capacity
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