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Weighting Problem (What is information?)

e 12 balls, all equal in weight except for one
e [wo-pan balance to use
e Determine which is the odd ball and whether it is heavier or lighter

As few uses of the balance as possible!

The outcome of a random experiment is guaranteed to be most

informative if the probability distribution over outcomes is uniform
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Definitions

e Shannon information content:

1
a;) = log, —
0 2]%‘

e Entropy:

1
H(X) = Zpi10g2 D

e Both are additive for independent variables

h(p)zloggg p  h(p) Hz(p)

0.001 10.0 0.011
0.01 6.6 0.081
0.1 3.3 0.47

0.2 2.3 0.72

0.5 1.0




Game of Submarine

e Player hides a submarine in one square of an 8 by 8 grid

e Another player trys to hit it

X

A
B
C
D
E
F
G
H

XIXIXXXXXX

XIXIXIXIXIXIXIX

XIXIXIXIXIXXX

12345678

move # 1
question G3
outcome r=n

63
64
h(x) 0.0227
Total info. 0.0227

P(x)

e Compare to asking 6 yes/no questions about the location




Raw Bit Content

e A binary name is given to each outcome of a random variable X

e The length of the names would be log, | Ax|
(assuming |Ax | happens to be a power of 2)

e Define: The raw bit content of X is
Ho(X) = log, |Ax|

e Simply counts the possible outcomes - no compression yet

o Additive: Ho(X,Y) = Ho(X) + Ho(Y)




Lossy Compression

o Let

Ax={a,b,c,d, e, f, g, h}

1 1 1 3 1 1
474747167 647 647 647 64

8

e The raw bit content is 3 bits (8 binary

names)

e |f we are willing to run arisk of 6 = 1/16
of not having a name for x, then we can
get by with 2 bits (4 names)

a a
b b
C C
d d
e e
f f
g g
h h




e,f.g.h

The outcomes of X ranked by their probability




Essential Bit Content

Allow an error with probability o

Choose the smallest sufficient subset S5 such that
P(:U e S(s) >1-9

(arrange the elements of Ax in order of decreasing probability and

take enough from beginning)

Define: The essential bit content of X is
Hs(X) = logy | Ss|

Note that the raw bit content Hy is a special case of Hj
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The essential bit content as the function of allowed probability of error




Extended Ensembles (Blocks)

Consider a tuple of N i.i.d. random variables
Denote by X¥ the ensemble (X, X>,..., Xy)
Entropy is additive: H(X%") = NH(X)

Example: N flips of a bent coin: pg = 0.9, p; = 0.1
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1111 1101,1011,... 0110, 1010,...

Outcomes of the bent coin ensemble X*

|
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0010, 0001, . ..




005 01 015 02 025 03 035 04 ¢

Essential bit content of the bent coin ensemble X*?




0.2 0.4 0.6

Essential bit content of the bent coin ensemble X1V
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0

Essential bit content per toss




Shannon’s Source Coding Theorem

Given € > 0 and 0 < 0 < 1, there exists a positive integer Ny such that

%H(;(XN) —~H(X)| <e.

e Proof involves

— Law of large numbers

— Chebyshev's inequality




Some samples from X1 Compare to H(X ') = 46.9 bits.




Typicality

A string contains r 1s and N — r Os

Consider r as a random variable (binomial distribution)

Mean and std: 7 ~ Np; & +/Npi(1 — p1)
A typical string is a one with r >~ Np;

In general, information content within N [H(X) £ j]
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1111111111110...11111110111

0000100000010. . 00001000010
0100000001000. ..00010000000

0001000000000. .. 00000000000
0000000000000. .. 00000000000

Outcomes of X ¥ ranked by their probability and the typical set Tng




Shannon’s source coding theorem
(verbal statement)

N i.i.d. random variables each with entropy H(X) can be compressed
into more than N H (X)) bits with negligible risk of information loss, as
N — o0;

conversely if they are compressed into fewer than NH (X)) bits it is
virtually certain that information will be lost.
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Contents, Chap. 5: Symbol Codes

Lossless coding: shorter encodings to the more probable outcomes

and longer encodings to the less probable
Practical to decode?
Best achievable compression?

Source coding theorem (symbol codes):
The expected length L(C, X) € [H(X),H(X) +1).

Huffman coding algorithm




Definitions

e A (binary) symbol code is a mapping from A, to {0,1}

e c(x) is the codeword of x and I(x) its length

e Extended code ¢t (z125...2x) = c(z1)c(x2) ... c(zN)

(no punctuation)

e A code C/(X) is uniquely decodable if no two distinct strings have
the same encoding

e A symbol code is called a prefix code if no codeword is a prefix of
any other codeword (constraining to prefix codes doesn't lose any
performance)




Examples

AX {a,b,c,d},
1 1 11
PX {5717§7§}7

e Using C:

¢t (acdba) = 10000010000101001000

e Code C; = {0,101} is a prefix code so it
can be represented as a tree

e Code C; = {1,101} is a not prefix code
because 1 is a prefix of 101




Expected length

Expected length L(C, X)) of a symbol code C for ensemble X is

L(C,X)= )  P(x)l(z).

zEAx

Bounded below by H(X) (uniquely decodeable code)

Equal to H(X) only if the codelengths are equal to the Shannon

iInformation contents:
l; = logy(1/pi)

Codelengths implicitly define a probability distribution {g;}

q;




Examples

0 0
0O 10
Cs 1
0
1
1

00
01




o L(Cs, X) =1.75 = H(X)

e (s is not a prefix code but is in fact uniquely decodable




Kraft Inequality

e If a code is uniquely decodeable its lengths must satisfy
ot

e For any lengths satisfying the Kraft inequality, there exists a prefix
code with those lengths

The total symbol code budget




Source coding theorem for symbol codes

e By setting
li = [logy(1/pi)],
where [I*] denotes the smallest integer greater than or equal to [*,

we get (with Kraft's inequality):
e There exists a prefix code C with

H(X) < L(C,X) < H(X) + 1

e Relative entropy Dxkr,(p||q) measures how many bits per symbol are

wasted

L(C,X) = sz' log(1/qi) = H(X) + Dxw(pllq)




Huffman Coding Algorithm

1. Take two least probable symbols in the alphabet
2. Give them the longest codewords differing only in the last digit

3. Combine them into a single symbol and repeat

step1l step2 step3 step4 a; Pi h(pz') ' C(%)

0 0
0.25 0.257 0.25 0.557 1.0 2.0 00
0.25 0.257 0.45 0.457° 1 2.0 10

0.2 T 0.2 71 . ) 2.3 11
0.157 0.3 — 0.3 2.7

0.1571 2.7




Optimality

e Huffman coding is optimal in two senses:

— Smallest expected codelength of uniquely decodable symbol
codes

— Prefix code — easy to decode
e But:

— The overhead of between 0 and 1 bits per symbol is important if

H(X) is small — compress blocks of symbols to make H(X)
larger

— Does not take context into account (symbol code vs. stream
code)




End of Chapter 5

Chap. 4 Chap. 5 Chap. 6

Block Symbol Stream
Lossy Lossless Lossless
Shannon's source  Huffman coding  Arithmetic coding

coding theorem algorithm algorithm




Guessing Game

Human was asked to guess a sentence character by character

The numbers of guesses are listed below each character

THERE-IS-NO-REVERSE-ON-A-MOTORCYCLE -
1115112112111 117111213212271111411111

One could encode only the string 1,1,1,5,1,...

Decoding requires an identical twin who also plays the guessing
game




Arithmetic Coding (1/2)

Human predictor is replaced by a probabilistic model of the source
The model supplies a predictive distribution over the next symbol

It can handle complex adaptive models (context-dependent)

Binary strings define real intervals %

within the real line [0, 1) 1
. 01

The string 01 corresponds to
[0.01,0.10) in binary or [0.25,0.50)

In base ten




Arithmetic Coding (2/2)

e Divide the real line [0, 1) into I intervals of lengths equal to the

probabilities P(z1 = a;)

0.00
P(:Ul = al)

fa

a2

P(il?l :CLl) —I—P(ﬂjlzag)

P(x1:a1)+...

ar
1.0 ¢

e Pick an interval and subdivide it (and iterate)

e Send a binary string whose interval lies within that interval




Example: Bent Coin (1/3)

e Coin sides are a and b, and the 'end of file’ symbol is [

e Use a Bayesian model with a uniform prior over probabilities of

outcomes

Context
(sequence thus far) Probability of next symbol

P(a)=

P(alb)=
P(albb)=0.21  P(b|bb

)=

)=

0.425 P(b)=0.425 P(0)=0.15
0.28 P(b|b)=0.57 P(0|b)=0.15
—0.15

|
)=0.64 P(O|bb)
0.17  P(b|bbb)=0.68  P(O]|bbb)=0.15
)= )

P(a| bbb

P(a|bbba =0.15

0.28 P(b|bbba)=0.57 P(0|bbba




b

bba

bb ppp

00010

00000
0000
00001 000

000110001

001000010

00101

00110
01110011

= 01001 "
0

0
010000100

010
10100101

01011
0

1100
11010110

0
0 011

1110
011110111

bbba — =

100001000

— 10001
10010

100

100111001

bbbb

bbbl

= 10110

10100
1010
10101 101

101111011

bbbaa

bbba  ypab

bbbal

bbO

= 11000
11001

= 11010
10111101

1100

1
11100

1110

= 11101

= 11110

111

111111111

- 10010111

Figure 6.4. Illustration of the
arithmetic coding process as the
sequence bbbal is transmitted.

- 10011000
— 10011001

- 10011010
- 10011011

— 10011100
- 10011101

110011110

10011111

-110100000

100111101







On Arithmetic Coding

Computationally efficient
Length of a string closely matches the Shannon information content

Overhead required to terminate a message is never more than 2 bits
= Finding a good coding equivalent to finding a good probabilistic
model!

Flexible:

— any source alphabet and any encoded alphabet

— alphabets can change with time

— probabilities are context-dependent

Can be used to generate random samples from random bits
economically




Lempel-Ziv Coding

e Used in gzip etc.

source substrings | A 1 0 11 01 010 00 10

s(n) 0 1 2 3 4 5 6 7
5(1)binary 000 001 010 011 100 101 110 111
(pointer, bit) (,1) (0,0) (01,1) (10,1) (100,0) (010,0) (001,0)

e Asymptotically compress down to the entropy of the source
(not in practice)




Summary (1/2)

e Fixed-length block codes (Chapter 4)
— Only a tiny fraction of source strings are given an encoding
— ldentify entropy as the measure of compressibility

— No practical use

e Symbol codes (Chapter 5)
— Variable code lengths allow lossless compression

— Expected code length is H + D (between the source
distribution and the code's implicit distribution)

— Dg, can be made smaller than 1 bit per symbol

— Huffman code is the optimal symbol code




Summary (2/2)

e Stream codes (Chapter 6)

— Arithmetic coding combines a probabilistic model with an
encoding algorithm

— Lempel-Ziv memorises strings that have already occured

— If any of the bits is altered by noise, the rest of the encoding fails




Exercises

6.19 (entropy and information)
4.16 (Shannon source coding theorem)
6.16 (Huffman coding)

6.7 (Arithmetic coding)



