T-61.182 Information Theory and Machine Learning

Data Compression (Chapters 4-6)

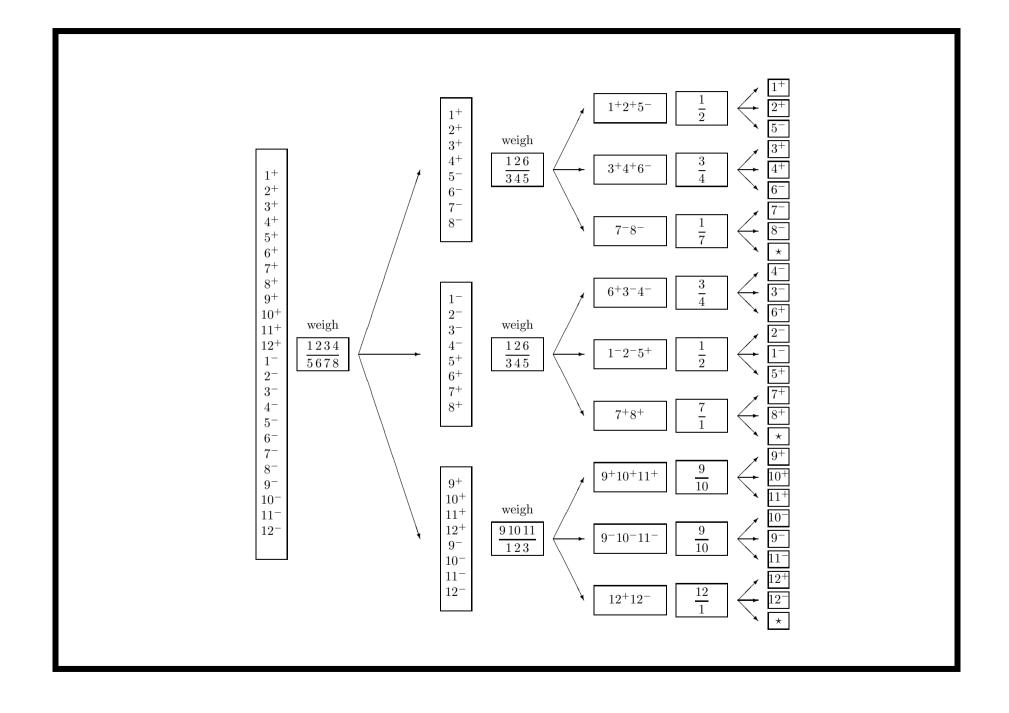
presented by Tapani Raiko Feb 26, 2004

Contents (Data Compression)

	Chap. 4	Chap. 5	Chap. 6
Data	Block	Symbol	Stream
Lossy?	Lossy	Lossless	Lossless
Result	Shannon's source	Huffman coding	Arithmetic coding
	coding theorem	algorithm	algorithm

Weighting Problem (What is information?)

- 12 balls, all equal in weight except for one
- Two-pan balance to use
- Determine which is the odd ball and whether it is heavier or lighter
- As few uses of the balance as possible!
- The outcome of a random experiment is guaranteed to be most informative if the probability distribution over outcomes is uniform



Definitions

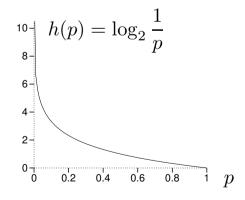
• Shannon information content:

$$h(x = a_i) \equiv \log_2 \frac{1}{p_i}$$

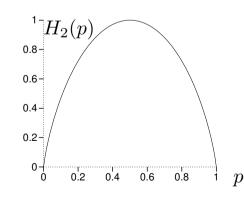
• Entropy:

$$H(X) = \sum_{i} p_i \log_2 \frac{1}{p_i}$$

• Both are additive for independent variables

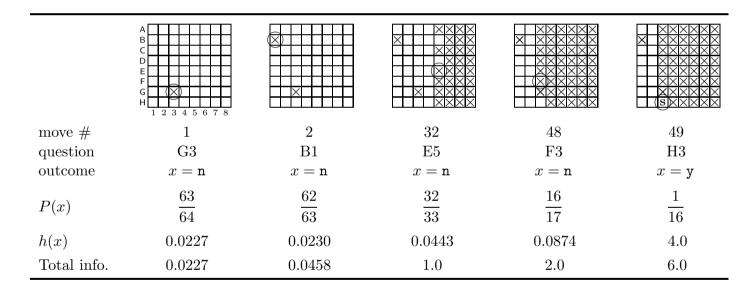


p	h(p)	$H_2(p)$
0.001	10.0	0.011
0.01	6.6	0.081
0.1	3.3	0.47
0.2	2.3	0.72
0.5	1.0	1.0



Game of Submarine

- Player hides a submarine in one square of an 8 by 8 grid
- Another player trys to hit it



Compare to asking 6 yes/no questions about the location

Raw Bit Content

- ullet A binary name is given to each outcome of a random variable X
- The length of the names would be $\log_2 |\mathcal{A}_X|$ (assuming $|\mathcal{A}_X|$ happens to be a power of 2)
- Define: The raw bit content of X is

$$H_0(X) = \log_2 |\mathcal{A}_X|$$

- Simply counts the possible outcomes no compression yet
- Additive: $H_0(X,Y) = H_0(X) + H_0(Y)$

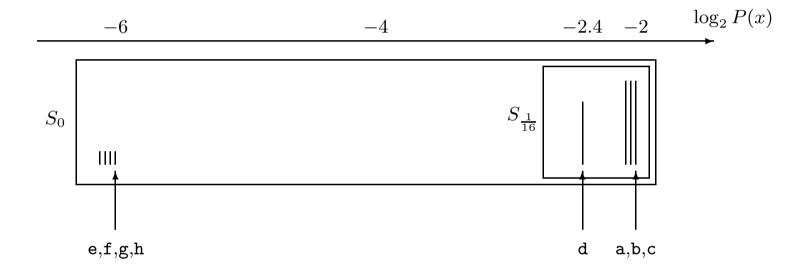
Lossy Compression

Let

$$\mathcal{A}_X = \{ \text{ a, b, c, d, e, f, g, h} \}$$
 $\mathcal{P}_X = \{ \frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{3}{16}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64} \}$

- The raw bit content is 3 bits (8 binary names)
- If we are willing to run a risk of $\delta=1/16$ of not having a name for x, then we can get by with 2 bits (4 names)

		_		
δ	= 0		δ =	= 1/16
x	c(x)		x	c(x)
a	000		a	00
b	001		b	01
С	010		С	10
d	011		d	11
е	100		е	_
f	101		f	_
g	110		g	_
h	111		h	_



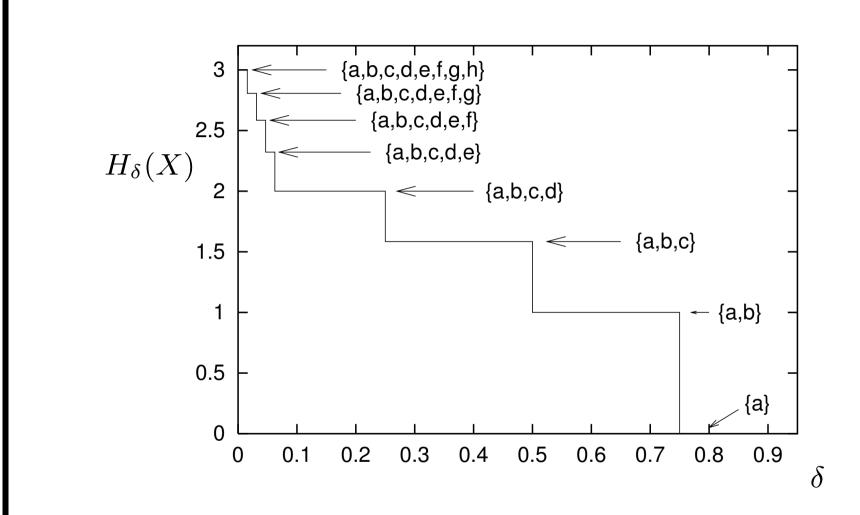
The outcomes of \boldsymbol{X} ranked by their probability

Essential Bit Content

- ullet Allow an error with probability δ
- Choose the smallest sufficient subset S_{δ} such that $P(x \in S_{\delta}) \geq 1 \delta$ (arrange the elements of \mathcal{A}_X in order of decreasing probability and take enough from beginning)
- Define: The essential bit content of X is

$$H_{\delta}(X) = \log_2 |S_{\delta}|$$

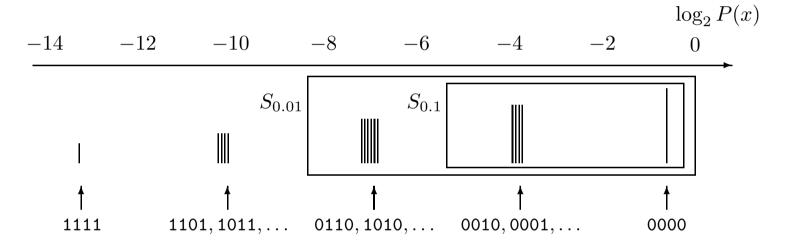
ullet Note that the raw bit content H_0 is a special case of H_δ



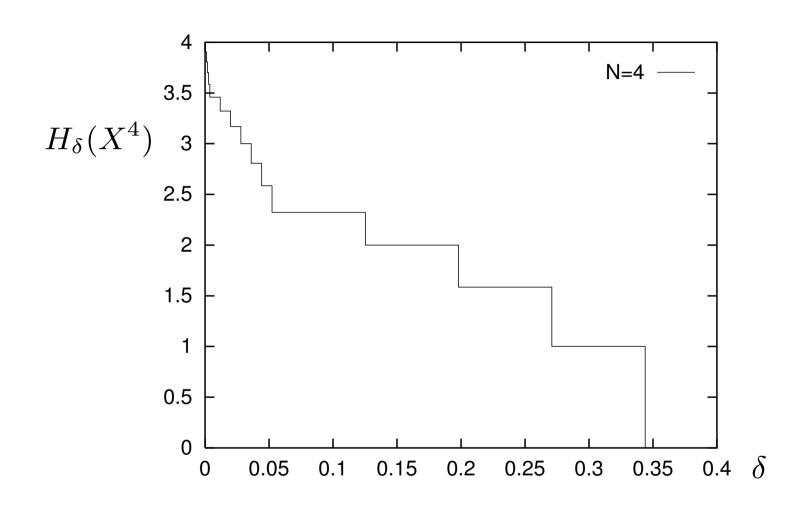
The essential bit content as the function of allowed probability of error

Extended Ensembles (Blocks)

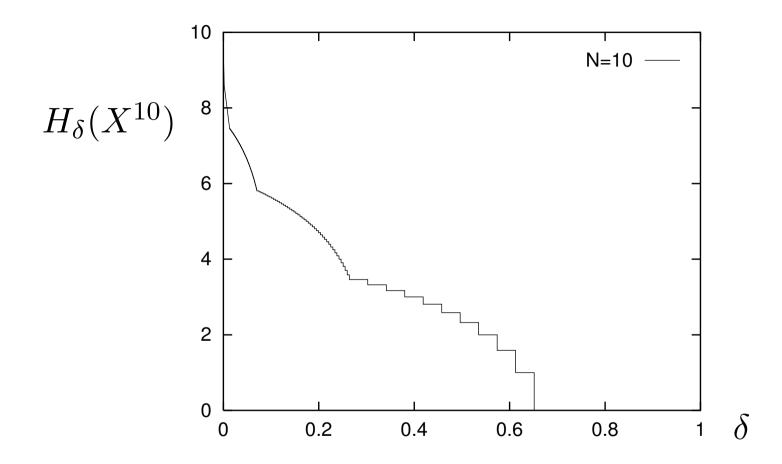
- ullet Consider a tuple of N i.i.d. random variables
- Denote by X^N the ensemble (X_1, X_2, \dots, X_N)
- Entropy is additive: $H(X^N) = NH(X)$
- Example: N flips of a bent coin: $p_0 = 0.9$, $p_1 = 0.1$



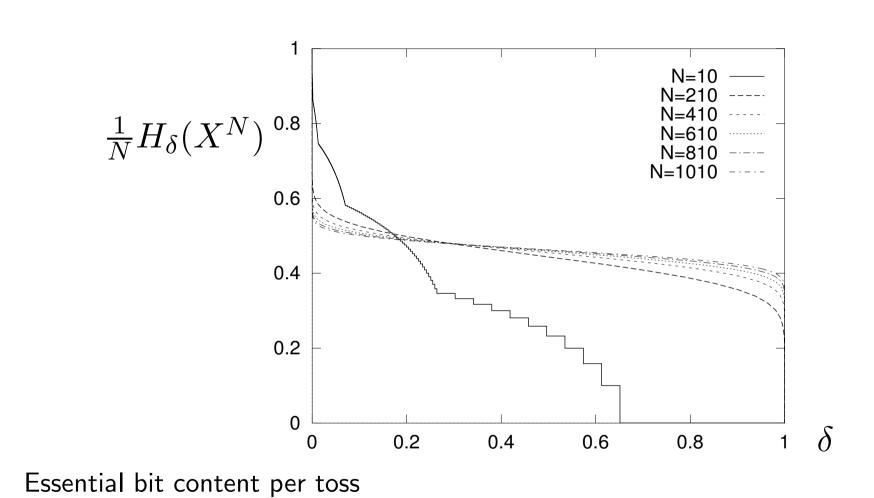
Outcomes of the bent coin ensemble X^4



Essential bit content of the bent coin ensemble X^4



Essential bit content of the bent coin ensemble ${\cal X}^{10}$

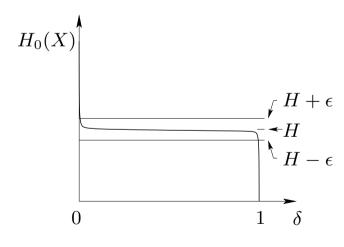


Shannon's Source Coding Theorem

Given $\epsilon>0$ and $0<\delta<1$, there exists a positive integer N_0 such that for $N>N_0$,

$$\left|\frac{1}{N}H_{\delta}(X^N) - H(X)\right| < \epsilon.$$

$$\frac{1}{N}H_{\delta}(X^N)$$



Proof involves

- Law of large numbers
- Chebyshev's inequality

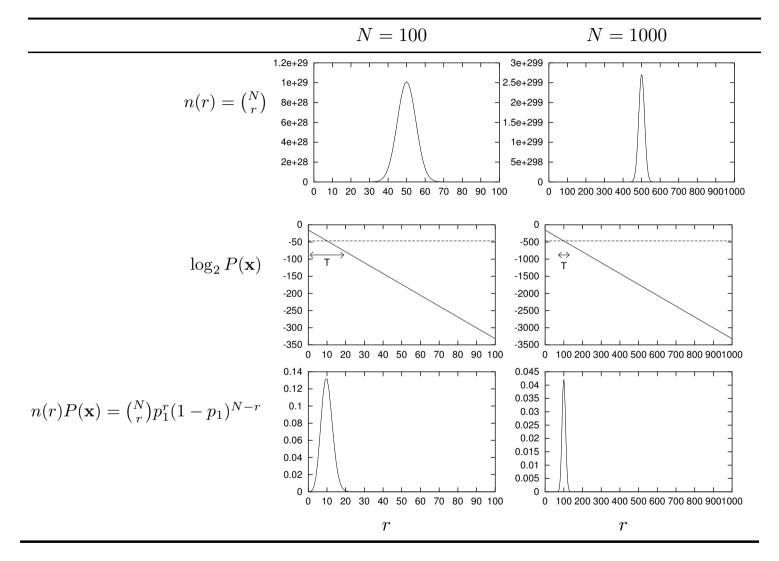
\mathbf{x} \log_2	$_{2}(P(\mathbf{x}))$
1	-50.1
111111	-37.3
111111111	-65.9
1.11	-56.4
11	-53.2
	-43.7
1	-46.8
1111	-56.4
111111	-37.3
1	-43.7
1111111111111111111111111111111	-56.4
	-37.3
.1	-56.4
111111.1.1.11	-59.5
	-46.8
	-15.2
111111111111111111111111111111111111111	-332.1

Some samples from X^{100} . Compare to $H(X^{100})=46.9$ bits.

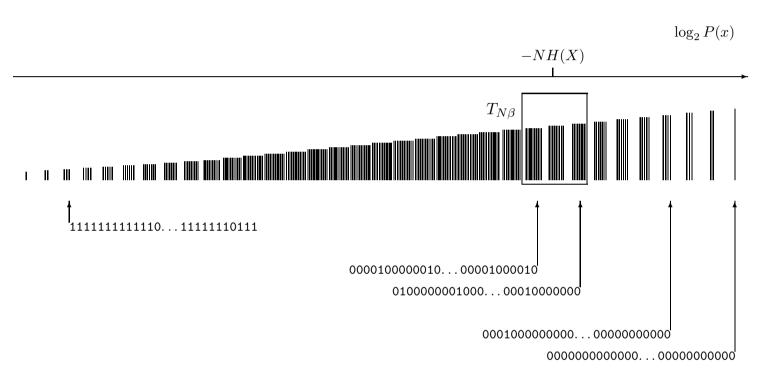
Typicality

- ullet A string contains r 1s and N-r 0s
- Consider r as a random variable (binomial distribution)
- Mean and std: $r \sim Np_1 \pm \sqrt{Np_1(1-p_1)}$
- ullet A typical string is a one with $r \simeq N p_1$
- In general, information content within $N[H(X) \pm \beta]$

$$\log_2 \frac{1}{P(\mathbf{x})} = N \sum_i p_i \log_2 \frac{1}{p_i} \simeq NH(X)$$



Anatomy of the typical set T



Outcomes of X^N ranked by their probability and the typical set $T_{N\beta}$

Shannon's source coding theorem (verbal statement)

N i.i.d. random variables each with entropy H(X) can be compressed into more than NH(X) bits with negligible risk of information loss, as $N \to \infty$;

conversely if they are compressed into fewer than NH(X) bits it is virtually certain that information will be lost.

End of Chapter 4

	Chap. 4	Chap. 5	Chap. 6
Data	Block	Symbol	Stream
Lossy?	Lossy	Lossless	Lossless
Result	Shannon's source	Huffman coding	Arithmetic coding
	coding theorem	algorithm	algorithm

Contents, Chap. 5: Symbol Codes

- Lossless coding: shorter encodings to the more probable outcomes and longer encodings to the less probable
- Practical to decode?
- Best achievable compression?
- Source coding theorem (symbol codes): The expected length $L(C,X) \in [H(X),H(X)+1)$.
- Huffman coding algorithm

Definitions

- A (binary) symbol code is a mapping from A_x to $\{0,1\}^+$
- ullet c(x) is the codeword of x and l(x) its length
- Extended code $c^+(x_1x_2...x_N) = c(x_1)c(x_2)...c(x_N)$ (no punctuation)
- ullet A code C(X) is uniquely decodable if no two distinct strings have the same encoding
- A symbol code is called a prefix code if no codeword is a prefix of any other codeword (constraining to prefix codes doesn't lose any performance)

Examples

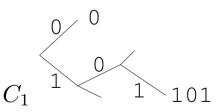
$$\mathcal{A}_X = \{\mathtt{a},\mathtt{b},\mathtt{c},\mathtt{d}\},$$

$$\mathcal{P}_X = \left\{\frac{1}{2},\frac{1}{4},\frac{1}{8},\frac{1}{8}\right\},$$

• Using C_0 :

$$c^+(\mathtt{acdba}) = 10000010000101001000$$

- Code $C_1 = \{0, 101\}$ is a prefix code so it can be represented as a tree
- ullet Code $C_2=\{ extstyle 1, extstyle 101\}$ is a not prefix code because 1 is a prefix of 101



Expected length

ullet Expected length L(C,X) of a symbol code C for ensemble X is

$$L(C, X) = \sum_{x \in \mathcal{A}_X} P(x) l(x).$$

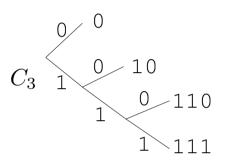
- ullet Bounded below by H(X) (uniquely decodeable code)
- Equal to H(X) only if the codelengths are equal to the Shannon information contents:

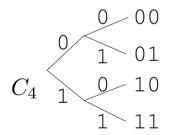
$$l_i = \log_2(1/p_i)$$

ullet Codelengths implicitly define a probability distribution $\{q_i\}$

$$q_i \equiv 2^{-l_i}$$

Examples





- $L(C_3, X) = 1.75 = H(X)$
- $L(C_4, X) = 2 > H(X)$
- $L(C_5, X) = 1.25 < H(X)$

C_3 :

a_i	$c(a_i)$	p_i	$h(p_i)$	l_i
a	0	$1/_{2}$	1.0	1
b	10	$1/_{4}$	2.0	2
С	110	$1/_{8}$	3.0	3
d	111	$1/_{8}$	3.0	3

	C_4	C_5
a	00	0
b	01	1
С	10	00
d	11	11

Example

 C_6 :

a_i	$c(a_i)$	p_i	$h(p_i)$	l_i
a	0	$1/_{2}$	1.0	1
b	01	$1/_{4}$	2.0	2
С	011	$1/_{8}$	3.0	3
d	111	$1/_{8}$	3.0	3

- $L(C_6, X) = 1.75 = H(X)$
- ullet C_6 is not a prefix code but is in fact uniquely decodable

Kraft Inequality

• If a code is uniquely decodeable its lengths must satisfy

$$\sum_{i} 2^{-l_i} \le 1$$

• For any lengths satisfying the Kraft inequality, there exists a prefix code with those lengths

	00	000	0000	
		000	0001	<u></u>
	00	001	0010	ge
		001	0011	The total symbol code budget
0			0100	q
	01	010	0101	Эрс
	01 011	011	0110	3
		011	0111	001
	10	100	1000	l mf
			1001	Sy
		101	1010	la la
			1011	to1
1		110	1100	he
	11	110	1101	=
	11	111	1110	
	111	111	1111	

Source coding theorem for symbol codes

By setting

$$l_i = \lceil \log_2(1/p_i) \rceil,$$

where $\lceil l^* \rceil$ denotes the smallest integer greater than or equal to l^* , we get (with Kraft's inequality):

• There exists a prefix code C with

$$H(X) \le L(C, X) < H(X) + 1$$

ullet Relative entropy $D_{\mathrm{KL}}(p||q)$ measures how many bits per symbol are wasted

$$L(C, X) = \sum_{i} p_i \log(1/q_i) = H(X) + D_{KL}(p||q)$$

Huffman Coding Algorithm

- 1. Take two least probable symbols in the alphabet
- 2. Give them the longest codewords differing only in the last digit
- 3. Combine them into a single symbol and repeat

$$x$$
 step 1 step 2 step 3 step 4

a $0.25 - 0.25 - 0.25 - 0.25 - 0.25 - 0.25 - 0.45 - 0.45 - 0.45 - 0.45 - 0.45 - 0.45 - 0.25 -$

a_i	p_i	$h(p_i)$	l_i	$c(a_i)$
a	0.25	2.0	2	00
b	0.25	2.0	2	10
С	0.2	2.3	2	11
d	0.15	2.7	3	010
е	0.15	2.7	3	011

Optimality

- Huffman coding is optimal in two senses:
 - Smallest expected codelength of uniquely decodable symbol codes
 - Prefix code → easy to decode
- But:
 - The overhead of between 0 and 1 bits per symbol is important if H(X) is small \to compress blocks of symbols to make H(X) larger
 - Does not take context into account (symbol code vs. stream code)

End of Chapter 5

	Chap. 4	Chap. 5	Chap. 6
Data	Block	Symbol	Stream
Lossy?	Lossy	Lossless	Lossless
Result	Shannon's source	Huffman coding	Arithmetic coding
	coding theorem	algorithm	algorithm

Guessing Game

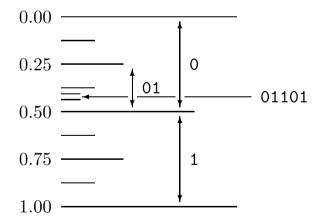
- Human was asked to guess a sentence character by character
- The numbers of guesses are listed below each character

```
T H E R E - I S - N O - R E V E R S E - O N - A - M O T O R C Y C L E - 1 1 1 5 1 1 2 1 1 2 1 1 15 1 17 1 1 1 2 1 3 2 1 2 2 7 1 1 1 1 4 1 1 1 1 1
```

- One could encode only the string $1, 1, 1, 5, 1, \ldots$
- Decoding requires an identical twin who also plays the guessing game

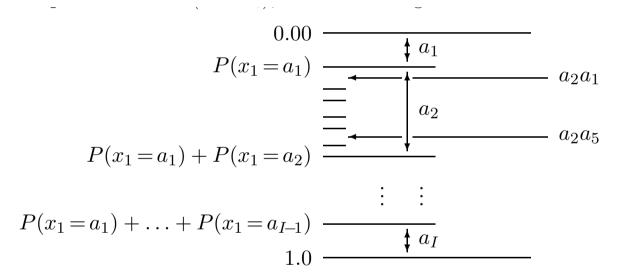
Arithmetic Coding (1/2)

- Human predictor is replaced by a probabilistic model of the source
- The model supplies a predictive distribution over the next symbol
- It can handle complex adaptive models (context-dependent)
- ullet Binary strings define real intervals within the real line [0,1)
- The string 01 corresponds to [0.01, 0.10) in binary or [0.25, 0.50) in base ten



Arithmetic Coding (2/2)

• Divide the real line [0,1) into I intervals of lengths equal to the probabilities $P(x_1=a_i)$

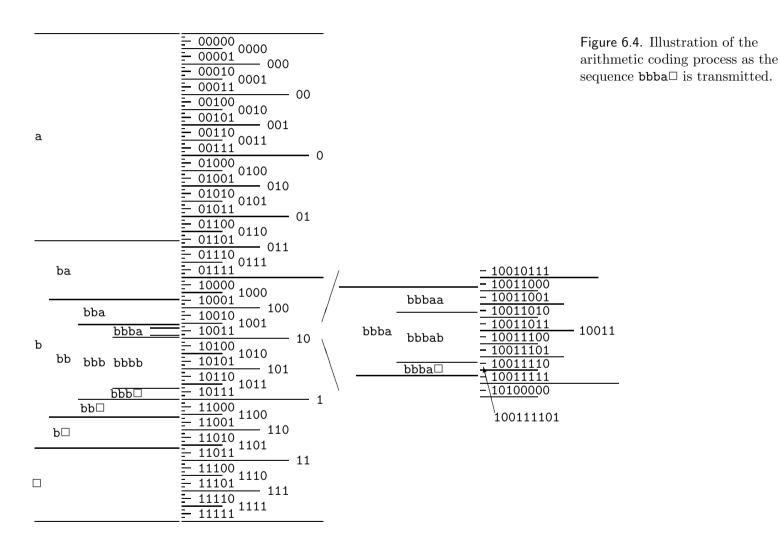


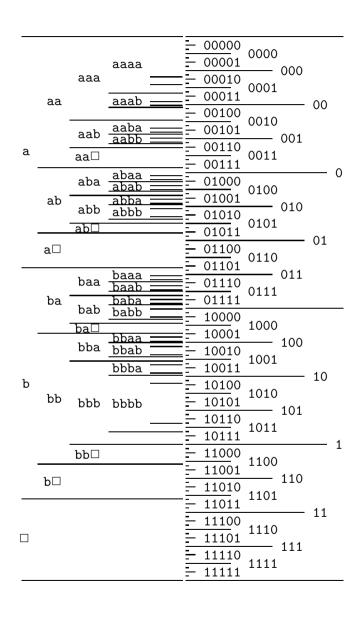
- Pick an interval and subdivide it (and iterate)
- Send a binary string whose interval lies within that interval

Example: Bent Coin (1/3)

- ullet Coin sides are a and b, and the 'end of file' symbol is \Box
- Use a Bayesian model with a uniform prior over probabilities of outcomes

Context (sequence thus far)	Probability of next symbol			
	$P(\mathtt{a}) = 0.425$	$P(\mathbf{b}) = 0.425$	$P(\Box) = 0.15$	
b	$P(\mathbf{a} \mathbf{b}){=}0.28$	$P(\mathbf{b} \mathbf{b}){=}0.57$	$P(\Box \mathbf{b}){=}0.15$	
bb	$P(\mathtt{a} \mathtt{bb}){=}0.21$	$P(\mathbf{b} \mathbf{bb}){=}0.64$	$P(\Box \mathtt{bb}){=}0.15$	
bbb	$P(\mathtt{a} \mathtt{bbb}){=}0.17$	$P(\mathbf{b} \mathbf{bbb}){=}0.68$	$P(\Box \mathtt{bbb}){=}0.15$	
bbba	$P(\mathtt{a} \mathtt{bbba}){=}0.28$	$P(\mathbf{b} \mathbf{bbba}){=}0.57$	$P(\Box \mathtt{bbba}){=}0.15$	





On Arithmetic Coding

- Computationally efficient
- Length of a string closely matches the Shannon information content
- Overhead required to terminate a message is never more than 2 bits
 Finding a good coding equivalent to finding a good probabilistic model!
- Flexible:
 - any source alphabet and any encoded alphabet
 - alphabets can change with time
 - probabilities are context-dependent
- Can be used to generate random samples from random bits economically

Lempel-Ziv Coding

• Used in gzip etc.

 Asymptotically compress down to the entropy of the source (not in practice)

Summary (1/2)

- Fixed-length block codes (Chapter 4)
 - Only a tiny fraction of source strings are given an encoding
 - Identify entropy as the measure of compressibility
 - No practical use
- Symbol codes (Chapter 5)
 - Variable code lengths allow lossless compression
 - Expected code length is $H + D_{KL}$ (between the source distribution and the code's implicit distribution)
 - D_{KL} can be made smaller than 1 bit per symbol
 - Huffman code is the optimal symbol code

Summary (2/2)

- Stream codes (Chapter 6)
 - Arithmetic coding combines a probabilistic model with an encoding algorithm
 - Lempel-Ziv memorises strings that have already occured
 - If any of the bits is altered by noise, the rest of the encoding fails

Exercises

- 6.19 (entropy and information)
- 4.16 (Shannon source coding theorem)
- 6.16 (Huffman coding)
- 6.7 (Arithmetic coding)