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Structure of the presentation

• MLP (briefly)

• Gaussian Processes

– Definition

– Implementation

– Some examples

– Summary

• Exercises
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MLP
Output layer:

a
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yi = f (2)(a
(2)
i )

f (2) linear in regression;

softmax in classification

Hidden layer:

a
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∑
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(1)
j )

f (1) nonlinear, e.g. tanh or

sigmoid.
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MLP for regression

• Error: ED(w) = 1
2

∑

n

∑

i

(

t
(n)
i − yi(x

(n); w)
)2

• Regularization, e.g. EW = 1
2

∑

i w2
i

• Objective function: M(w) = βED + αEW

• Probabilistic interpretation:

– βED(w) is the − log likelihood of a noise model.

– αEW is the − log prior probability of weights

– Find the posterior p(w|D, α, β) = 1
ZM

exp {−M(w)}.
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On the importance of regularization

• Models without regularization tend to overfit the data.
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Benefits of Bayesian methods

Selection criteria for model complexity Error bars from posterior pdf

(Evidence ZM )

• Validation data set is not needed.

• Regularization constants can be optimized on-line.

• Evidence is not noisy (cf. CV), and its gradient can be evaluated.

• Feature selection with Automatic Relevance Determination (ARD) prior.
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Functions produced by random network

How does the output of (a large) MLP behave if its weights are random

samples from Gaussian distribution?

H number of hidden nodes σout stdev. of weights in output layer

σin stdev. of weights in input layer σbias stdev. of biases in input layer
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...random network

The less we regularize (i.e. larger σ),

the more complex functions we will

get.

• As H → ∞ the complexity of the functions becomes independent of

the number of parameters in the model.

• MLP with one hidden layer and Gaussian priors for weights ⇒
Gaussian process as H → ∞.
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Bayesian view on regression

MLPs are universal function approximators.

From a Bayesian viewpoint we are trying to compute the posterior

distribution of a function y(x):

P (y(x)|tN , XN ) =
P (tN |y(x), XN )P (y(x))

P (tN |XN )
.

P (y(x)) is a prior on the functions. It is often implicit, since priors are

usually placed on parameters of the function approximator.

Desired priors on parameteres are such that y(x) is continuous and

smooth, and has less high frequency power than low frequency power.
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Gaussian Process

Process modelling: Place the prior P (y(x)) directly on the space of

functions instead of on the parameters of y.

Gaussian Process: The prior has a Gaussian form,

P (y(x)) = 1
Z

exp
{

− 1
2y(x)T Ay(x)

}

.

GPs can be seen as a generalization of Gaussian probability distribution

to space of functions.

• GP is specified by mean and covariance functions, µ(x) and

C(x, x′).

• One sample from GP prior is a function y(x).

T-61.182 Information theory and machine learning 10/25



AB HELSINKI UNIVERSITY OF TECHNOLOGY

NEURAL NETWORKS RESEARCH CENTRE

Gaussian Process: Definition

Probability distribution of a function y(x) is a Gaussian process if for

any finite selection of points x(1), x(2), . . . , x(N), the density

P (y(1), y(2), . . . , y(N)) is Gaussian.
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GP: Example - Regression

Data: XN , tN =
{

x(n), tn
}N

n=1

Task: Predict tN+1, given x(N+1)

Model 1 (parametric): Model t with y(x; w) =
∑H

h=1 whφh(x),

where φh(x) = exp
[

− (x−ch)
2r2

]

are a set of radial basis functions

centered at fixed points {ch}H

h=1.

Model 2 (non-parametric): Model t with cubic splines, i.e. select ŷ(x)

that minimizes

M(y(x)) =
1

2
β

∑

n

(y(x(n)) − tn)2 +
1

2
α

∫

[y(p)(x)]2dx,

where p=2 (second derivative).
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Model 1 - Parametric

Place prior on w and compute the posterior distribution p(w|XN , tN )

(using MCMC or Laplace).

For prediction we need to compute

p(tN+1|XN+1, tN ) =
∫

P (tN+1|w, x(N+1))P (w|tN , XN )dHw.

It seems that the way in which y(x) is represented is not relevant.
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Model 2 - Non-parametric

Probabilistic interpretation for the cost function M(y(x)):

Likelihood: log P (tN |y(x), β) = − 1
2β

∑

n(y(x(n)) − tn)2 + const.

Prior: log P (y(x)|α) = − 1
2α

∫

[y(p)(x)]2dx + const.

Splines can be written as parametric models

Use Fourier transform: y(x) =
∑

h wh(cos) cos(hx) +
∑

h wh(sin) sin(hx)

Use regularizer EW (w) =
∑

h
1
2h

p

2 w2
h(cos) + 1

2h
p

2 w2
h(sin)

Splines priors are Gaussian processes

The prior can be written as − 1
2α

∫

[y(p)(x)]2dx =

− 1
2α

∫

[y(x)T D(p)T

][D(p)y(x)]dx = − 1
2y(x)T Ay(x) (GP prior)
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Model 1: from RBF to GP

Since splines can be written in terms of basis functions, we will

concentrate on model 1 from now on.

Define R to be a N × H matrix of values of H basis functions at points

{xN}, Rnh = φh(x(n)).

Define vector yn =
∑

h Rnhwh

Assume P (w) = N (0, σ2
wI)

We will next compute the covariance of t, and then inspect its properties

when H → ∞. It will turn out that the covariance depends only on

{xN}.
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Model 1: Covariances

Covariance of y:

Q = Ew

[

yyT
]

= Ew

[

RwwT RT
]

= σ2
wRRT .

⇒ The prior for y is Gaussian P (y) = N (0, Q)

- If H < N , Q does not have full rank.

Covariance of t:

Observations tn = y(x(n)) + ν, where ν ∼ N (0, σ2
νI) is additive

Gaussian noise.

⇒ The prior for t is Gaussian P (t) = N (0, Q + σ2
νI).

- The covariance C = Q + σ2
νI is full rank.
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Model 1: H → ∞
Each entry in Qnn′ = σ2

w

∑

h φh(x(n))φh(x(n′)). Assume that σ2
w scales

as S/dh. Then, assuming that hth basis function is centered at h

Qnn′ = S

∫ hmax

hmin

φh(x(n))φh(x(n′)dh = S

∫ hmax

hmin

e−
(x

(n)
−h)2

2r2 e−
(x

(n′)
−h)2

2r2 dh

= Se−
(x

(n)
−x

(n′))2

4r2

∫ hmax

hmin

e
−

1
r2

(

h2
−2 x

(n)+x
(n′)

2 h+

(

x
(n)+x

(n′)

2

)2)

dh

=
√

πr2S exp

{

− (x(n) − x(n′))2

4r2

}

= C(x(n), x(n′))

The prior can be summarized by covariance function C(x(n), x(n′))
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Gaussian process

Conclusion: The prior probability for t can be written as

P (t) = 1
Z

e−
1
2 t

T
C

−1
t, where Cnn′ = C(x(n), x(n′)) + σ2

νδnn′ .

We don’t need to construct the RBF estimator.

Inference of tN+1 can now be made by computing

P (tN+1|tN ) = P (tN+1,tN )
P (tN ) ∝ exp

{

− 1
2 [tN tN+1]

T
C−1

N+1 [tN tN+1]
}

We can evaluate the mean and stdev of the posterior of tN+1 by

brute-force inversion of CN+1.
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GP: Computational complexity

Matrix inversion scales as O(N3). The computational complexity can be

reduced a bit by partitioned inverse equations. Define submatrices

CN+1 =























CN

















k









[

kT
]

[κ ]















.

Using the submatrices, it turns out that

p(tN+1|tN ) = 1
Z

exp

{

− (tN+1−t̂N+1)
2

2σ̂2
t̂N+1

}

,

where t̂N+1 = kT C−1
N tN , and σ̂2

t̂N+1
= κ − kT C−1

N k.

⇒ We only need to invert CN .
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Samples from GPs with different C(x,x′)
C determines the behavior of the GP. The restrictions to C are that it must

be positive definite and symmetric.
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Preferred functional forms

The prior gives high probability to vectors which have small tT C−1t.

This is in particular the case for the normalized eigenvectors vi of C

with large eigenvalues λi, since

Cvi = λivi yields vT
i C−1vi = λ−1

i .

The prior is thus biased towards solutions with small λ−1
i .

We can therefore view the preferred functional forms by plotting the

eigenvectors. The associated eigenvalues tell the degree of preference of

the functional form.
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On Adaptation

The covariance function depends on hyperparameters Θ. Optimal values for Θ

can be found by using a MAP estimate or by MCMC.

Remember: The posterior may be multimodal.
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Summary

• GP places an explicit Gaussian prior on the form of the functions.

• GP is defined by mean and covariance functions.

• Computationally heavy, O(N3)

• Classification task is more difficult than regression, since the

likelihood function P (tN |y(x), XN ) is not Gaussian. We either

have to resort to (Laplace) approximations, MAP, or MCMC.

• C can be seen as a kernel ⇒ connection to Reproducing Kernel

Hilbert Spaces.
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Exercise 1

16.6 (inference and variance) For a normal distribution in two

variables with

C =





1 0.75

0.75 0.75





as covariance and zero mean, compute the variance in terms of the first

variable if the second one is observed, and vice versa.

From Schölkopf & Smola: Learning with Kernels

T-61.182 Information theory and machine learning 24/25



AB HELSINKI UNIVERSITY OF TECHNOLOGY

NEURAL NETWORKS RESEARCH CENTRE

Exercise 2

16.7 (Samples from a Gaussian Process prior) Draw a sample X at

random from the uniform distribution on [0, 1]2 and compute the

corresponding covariance matrix C. Use for instance the linear

covariance function C(x, x′) = xx′ and the Gaussian RBF covariance

function C(x, x′) = exp
{

− 1
2σ2 ‖x − x′‖2

}

.

Write a program which draws samples uniformly from the normal

distribution N (0, C) (Hint: Compute the eigenvectors of C first). What

difference do you observe when using different covariance functions?

From Schölkopf & Smola: Learning with Kernels

T-61.182 Information theory and machine learning 25/25


