T-61.182 Information Theory and Machine Learning

38. Introduction to Neural Networks
40. Capacity of a Single Neuron
41. Learning as Inference

Presented by Yang, Zhi-rong on 22, April 2004

Contents

Introduction to Neural Networks

- Memories
- Terminology
- Capacity of a Single Neuron
 - Neural network learning as communication
 - The capacity of a single neuron
 - Counting threshold functions
- Learning as Inference
 - Neural network learning as inference
 - Beyond optimization: making predictions
 - Implementation by Monte Carlo method
 - Implementation by Gaussian approximations

Memories

Address-based memory scheme

- not associative
- not robust or fault-tolerant
- not distributed
- Biological memory systems
 - content addressable
 - error-tolerant and robust
 - parallel and distributed

Terminology

- Architecture
- Activity rule
- Learning rule
- Supervised neural networks
- Unsupervised neural networks

NN learning as communication

1. Obtain adapted weights

$$\{t_n\}_{n=1}^N$$

$$\downarrow$$

$$\{\mathbf{x}_n\}_{n=1}^N \longrightarrow \text{Learning algorithm} \longrightarrow \mathbf{w}$$

2. Communication

$$\{\mathbf{x}_n\}_{n=1}^N \longrightarrow \mathbf{w} \longrightarrow \{\hat{t}_n\}_{n=1}^N$$

The capacity of a single neuron

General position

Definition 1 A set of points $\{x_n\}$ in K-dimensional space are in general position if any subset of size $\leq K$ is linearly independent

The linear threshold function

$$y = f\left(\sum_{k=1}^{K} w_k x_k\right)$$
$$f(a) = \begin{cases} 1 & a > 0\\ 0 & a \le 0 \end{cases}$$

Counting threshold functions

Denote T(N, K) the number of distinct threshold functions on N points n general position in K dimensions. In this section, the author try to derive a fomula for T(N, K). To start with, let us work out a few cases by hand.

•
$$K = 1$$
, for any N
 $T(N, 1) = 2$

•
$$N = 1$$
, for any K
 $T(1, K) = 2$

•
$$K = 2$$

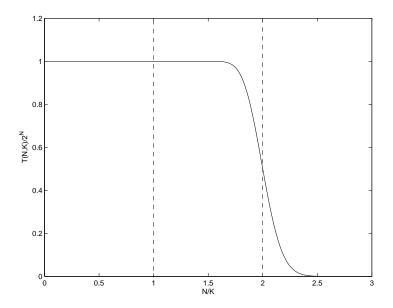
 $T(N,2) = 2N$
The points of XOR function are unrealizable.

Counting threshold functions

Final Result

$$T(N,K) = \begin{cases} 2^N & K \ge N\\ 2\sum_{k=0}^{K-1} \binom{N-1}{k} & K < N \end{cases}$$

Vapnik-Chervonenkis dimension (VC dimension)



NN learning as inference

Objective function to be minimized

$$M(\mathbf{w}) = G(\mathbf{w}) + \alpha E_W(\mathbf{w})$$

with error function

$$G(\mathbf{w}) = -\sum_{n} \left[t^{(n)} \ln y(\mathbf{x}^{(n)}; \mathbf{w}) + (1 - t^{(n)}) \ln(1 - y(\mathbf{x}^{(n)}; \mathbf{w})) \right]$$

and a regularizer

$$E_W(\mathbf{w}) = \frac{1}{2} \sum_i w_i^2$$

NN learning as inference

Finally

$$P(\mathbf{w}|D,\alpha) = \frac{P(D|\mathbf{w})P(\mathbf{w}|\alpha)}{P(D|\alpha)}$$
(1)
$$= \frac{e^{G(\mathbf{w})}e^{-\alpha E_W(\mathbf{w})}/Z_W(\alpha)}{P(D|\alpha)}$$
(2)
$$= \frac{1}{Z_M}\exp(-M(\mathbf{w}))$$
(3)

NN learning as inference

Denote

$$y(\mathbf{w}; \mathbf{x}) \equiv P(t = 1 | \mathbf{x}, \mathbf{w})$$

Then

$$P(t|\mathbf{x}, \mathbf{w}) = y^t (1-y)^{1-t} = \exp[t \ln y + (1-t)\ln(1-y)]$$

The likelihood can be expressed in terms of the error function

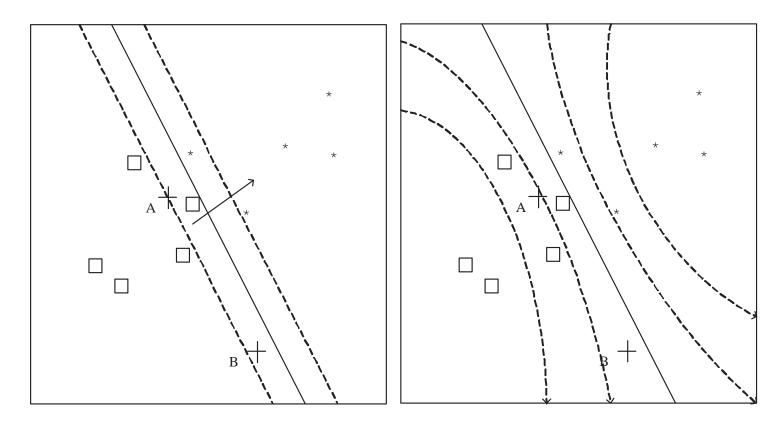
$$P(D|\mathbf{w}) = \exp[-G(\mathbf{w})]$$

Similarly for the regularizer

$$P(\mathbf{w}|\alpha) = \frac{1}{Z_W(\alpha)} \exp(-\alpha E_W)$$

Making predictions

Over-confident prediction (example)



Bayesian prediction: marginalizing

Take into account the whole posterior ensemble

$$P(\mathbf{t}^{(N+1)}|\mathbf{x}^{(N+1)}, D, \alpha)$$

= $\int d^{K} \mathbf{w} P(\mathbf{t}^{(N+1)}|\mathbf{x}^{(N+1)}, \mathbf{w}, \alpha) P(\mathbf{w}|D, \alpha)$

Try to find a way of computing the integral

$$P(\mathbf{t}^{(N+1)} = 1 | \mathbf{x}^{(N+1)}, D, \alpha)$$

= $\int d^{K} \mathbf{w} P(\mathbf{t}^{(N+1)} | \mathbf{x}^{(N+1)}, \mathbf{w}, \alpha) \frac{1}{Z_{M}} \exp(-M(\mathbf{w}))$

The Langevin Monte Carlo Method

```
q = gradM(w); M = findM(w);
for l=1:L
  p = randn(size(w)); H = p'*p/2+M;
  p = p - epsilon*g/2;
  wnew = w+epsilon*p;
  gnew = gradM(wnew);
  p = p-epsilon*gnew/2;
  Mnew = findM(wnew); Hnew = p'*p/2+Mnew;
  dH = Hnew - H;
  if (dH<0||rand()<exp(-dH))
    g=gnew; w=wnew; M=Mnew;
endfor
```

The Langevin Monte Carlo Method

'gradient descent with added noise'

$$\Delta \mathbf{w} = -\frac{1}{2}\epsilon^2 \mathbf{g} + \epsilon \mathbf{p}$$

speedup by Hamiltonian Monte Carlo

```
wnew=w; gnew=g;
for tau=1:Tau
  p = p-epsilon*gnew/2;
  wnew = wnew+epsilon*p;
  gnew = gradM(wnew);
  p = p-epsilon*gnew/2;
endfor
```

• Taylor expand $M(\mathbf{w})$

$$M(\mathbf{w}) \simeq M(\mathbf{w}_{MP}) + \frac{1}{2}(\mathbf{w} - \mathbf{w}_{MP})^T \mathbf{A}(\mathbf{w} - \mathbf{w}_{MP}) + \cdots$$

with Hessian matrix

$$A_{ij} \equiv \left. \frac{\partial^2}{\partial w_i \partial w_j} M(\mathbf{w}) \right|_{\mathbf{w} = \mathbf{w}_{MP}}$$

The Gaussian approximation is defined as:

$$Q(\mathbf{w}; \mathbf{w}_{MP}, \mathbf{A}) = [det(\mathbf{A}/2\pi)]^{1/2} \exp\left[-\frac{1}{2}(\mathbf{w} - \mathbf{w}_{MP})^T \mathbf{A}(\mathbf{w} - \mathbf{w}_{MP})\right]$$

 \checkmark the second derivative of $M(\mathbf{w})$ with respect to \mathbf{w} is given by

$$\frac{\partial^2}{\partial w_i \partial w_j} M(\mathbf{w}) = \sum_{n=1}^N f'(a^{(n)}) x_i^{(n)} x_j^{(n)} + \alpha \delta_{ij}$$

$$f(a) \equiv \frac{1}{1 + e^{-a}}$$
$$a^{(n)} = \sum_{j} w_{j} x_{j}^{(n)}$$

$$P(a|\mathbf{x}, D, \alpha) = \text{Normal}(a_{MP}, s^2)$$
$$= \frac{1}{\sqrt{2\pi s^2}} \exp\left(-\frac{(a - a_{MP})^2}{2s^2}\right)$$

where

$$a_{MP} = a(\mathbf{x}; \mathbf{w}_{MP})$$

and

$$s^2 = \mathbf{x}^T \mathbf{A}^{-1} \mathbf{x}$$

Therefore the marginalized output is:

$$P(t = 1 | \mathbf{x}, D, \alpha) = \psi(a_{MP}, s^2) \equiv \int da f(a) \text{Normal}(a_{MP}, s^2)$$

And further approximation can be applied:

$$\psi(a_{MP}, s^2) \simeq \phi(a_{MP}, s^2) \equiv f(\kappa(s)a_{MP})$$

where

$$\kappa(s) = 1/\sqrt{1 + \pi s^2/8}$$

Exercises

- Practice on counting threshold functions: Ex. 40.6 (page 490)
- Prove the approximation on Hessian matrix: Ex. 41.1 (page 501)