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Memories

Address-based memory scheme
– not associative
– not robust or fault-tolerant
– not distributed

Biological memory systems
– content addressable
– error-tolerant and robust
– parallel and distributed

T-61.182 Information Theory and Machine Learning – p. 3/20



Terminology

Architecture

Activity rule

Learning rule

Supervised neural networks

Unsupervised neural networks
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NN learning as communication

1. Obtain adapted weights

{tn}
N
n=1

↓

{xn}
N
n=1 −→ Learning algorithm −→ w

2. Communication

{xn}
N
n=1 −→ w −→ {t̂n}

N
n=1
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The capacity of a single neuron

General position

Definition 1 A set of points {xn} in K-dimensional
space are in general position if any subset of size ≤ K is
linearly independent

The linear threshold function

y = f

(

K
∑

k=1

wkxk

)

f(a) =

{

1 a > 0

0 a ≤ 0
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Counting threshold functions

Denote T (N,K) the number of distinct threshold functions
on N points n general position in K dimensions. In this
section, the author try to derive a fomula for T (N,K).
To start with, let us work out a few cases by hand.

K = 1, for any N
T (N, 1) = 2

N = 1, for any K
T (1,K) = 2

K = 2
T (N, 2) = 2N
The points of XOR function are unrealizable.
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Counting threshold functions

Final Result

T (N,K) =

{

2N K ≥ N

2
∑K−1

k=0

(N−1
k

)

K < N

Vapnik-Chervonenkis dimension (VC dimension)
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NN learning as inference

Objective function to be minimized

M(w) = G(w) + αEW (w)

with error function

G(w) = −
∑

n

[

t(n)lny(x(n);w) + (1 − t(n))ln(1 − y(x(n);w))
]

and a regularizer

EW (w) =
1

2

∑

i

w2
i
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NN learning as inference

Finally

P (w|D,α) =
P (D|w)P (w|α)

P (D|α)
(1)

=
eG(w)e−αEW (w)/ZW (α)

P (D|α)
(2)

=
1

ZM
exp(−M(w)) (3)
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NN learning as inference

Denote
y(w;x) ≡ P (t = 1|x,w)

Then

P (t|x,w) = yt(1 − y)1−t = exp[tlny + (1 − t)ln(1 − y)]

The likelihood can be expressed in terms of the error
function

P (D|w) = exp[−G(w)]

Similarly for the regularizer

P (w|α) =
1

ZW (α)
exp(−αEW )
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Making predictions

Over-confident prediction (example)

*


*


*

*


*


A


B


*


*


*

*


*


A


B


T-61.182 Information Theory and Machine Learning – p. 12/20



Bayesian prediction: marginalizing

Take into account the whole posterior ensemble

P (t(N+1)|x(N+1), D, α)

=
∫

dKwP (t(N+1)|x(N+1),w, α)P (w|D,α)

Try to find a way of computing the integral

P (t(N+1) = 1|x(N+1), D, α)

=
∫

dKwP (t(N+1)|x(N+1),w, α) 1
ZM

exp(−M(w))
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The Langevin Monte Carlo Method

g = gradM(w); M = findM(w);
for l=1:L
p = randn(size(w)); H = p’*p/2+M;

p = p-epsilon*g/2;
wnew = w+epsilon*p;
gnew = gradM(wnew);
p = p-epsilon*gnew/2;

Mnew = findM(wnew); Hnew = p’*p/2+Mnew;
dH = Hnew-H;
if (dH<0||rand()<exp(-dH))

g=gnew; w=wnew; M=Mnew;
endfor
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The Langevin Monte Carlo Method

‘gradient descent with added noise’

∆w = −
1

2
ǫ2g + ǫp

speedup by Hamiltonian Monte Carlo

wnew=w; gnew=g;
for tau=1:Tau
p = p-epsilon*gnew/2;
wnew = wnew+epsilon*p;
gnew = gradM(wnew);
p = p-epsilon*gnew/2;

endfor
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Gaussian approximations

Taylor expand M(w)

M(w) ≃M(wMP ) +
1

2
(w − wMP )TA(w − wMP ) + · · ·

with Hessian matrix

Aij ≡
∂2

∂wi∂wj
M(w)

∣

∣

∣

∣

w=wMP

The Gaussian approximation is defined as:

Q(w;wMP ,A)

= [det(A/2π)]1/2exp
[

−1
2(w − wMP )TA(w − wMP )

]
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Gaussian approximations

the second derivative of M(w) with respect to w is
given by

∂2

∂wi∂wj
M(w) =

N
∑

n=1

f ′(a(n))x
(n)
i x

(n)
j + αδij

where

f(a) ≡
1

1 + e−a

a(n) =
∑

j

wjx
(n)
j
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Gaussian approximations

P (a|x, D, α) = Normal(aMP , s
2)

= 1√
2πs2

exp
(

− (a−aMP )2

2s2

)

where
aMP = a(x;wMP )

and
s2 = xTA−1x
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Gaussian approximations

Therefore the marginalized output is:

P (t = 1|x, D, α) = ψ(aMP , s
2) ≡

∫

daf(a)Normal(aMP , s
2)

And further approximation can be applied:

ψ(aMP , s
2) ≃ φ(aMP , s

2) ≡ f(κ(s)aMP )

where

κ(s) = 1/
√

1 + πs2/8
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Exercises

Practice on counting threshold functions: Ex. 40.6
(page 490)

Prove the approximation on Hessian matrix: Ex. 41.1
(page 501)
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