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Memories

-

#® Address-based memory scheme
— not associative
— not robust or fault-tolerant
— not distributed

# Biological memory systems
— content addressable
— error-tolerant and robust
— parallel and distributed
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Terminology

Architecture

Activity rule

Learning rule

Supervised neural networks
Unsupervised neural networks
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NN lear ning as communication

-

1. Obtain adapted weights

{tn}n_
|

{x,}Y_, — Learning algorithm — w
2. Communication

{Xn}nNzl - W — {fn}nNzl
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The capacity of a single neuron
f.p General position T

Definition 1 A set of points {x, } in K-dimensional
space are in general position if any subset of size <K is
linearly independent

® The linear threshold function
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Counting threshold functions
-

Denote T'(N, K') the number of distinct threshold functions
on N points n general position in X dimensions. In this
section, the author try to derive a fomula for T'(N, K).

To start with, let us work out a few cases by hand.

=

® K=1,forany N

T(N,1) =2
® N =1,forany K

T(1,K) =2
® K =2

T(N,2) =2N

The points of XOR function are unrealizable.

o -
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Counting threshold functions
-

® Final Result

# Vapnik-Chervonenkis dimension (VC dimension)




NN learning asinference

-

# Objective function to be minimized
M(w) = G(w) + aFEy (W)
# with error function

G(w) = = Y [ Iny(x;w) + (1= 1) In(1 - y(x"); )]

n

# and a reqgularizer



NN learning asinference

f.’ Finally T
pewiD,a) — FLEIIP(vlo) .
B BG(W)G_O‘EW(W)/ZW(&)
B P(D|a) )
= Le><p(—f\4(vv)> (3)



NN learning asinference

Denote
y(w;x) = P(t = 1|x,w)

Then
P(tlx,w) = y'(1 — y)' " = exp[tlny + (1 — ¢)In(1 — y)]

The likelihood can be expressed in terms of the error
function
P(D|w) = exp[~G(w)]

Similarly for the regularizer

1
Zw ()

P(w|a) = ——exp(—aEw)
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Making predictions

# Over-confident prediction (example)
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Bayesian prediction: marginalizing

- .

# Take into account the whole posterior ensemble

P(t(N+1)’X(N+1), D, &)
= [dEwPEAWNTD|xV+) w o) P(w|D, a)

# Try to find a way of computing the integral

P(t(N+1) _ 1‘X<N+1),D,a)
— dewP(t(NH)\X(NH),W,&)ﬁexp(—M(w))
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TheLangevin Monte Carlo Method

fg = gradMw; M= findMw),; T
for | =1.L
P = randn(size(w); H=p *p/2+M
P = p-epsilon*g/2;
wnew = wtepsi | on* p;

gnew = gradM wnew) ;
P = p-epsilon*gnew 2;

Mhew = findM wnew); Hnew = p’ *p/2+Mew,
dH = Hhew H;
I f (dH<O]| | rand() <exp(-dH))
g=gnew;, w=wnew, M=Mhew
endf or
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TheLangevin Monte Carlo Method

- .

# ‘gradient descent with added noise’

1
Aw = —§€2g +€p

# speedup by Hamiltonian Monte Carlo

wWnew=w, gnew=g;
for tau=1l: Tau
P = p-epsilon*gnew 2;
wnew = wnew+epsi | on*p;
gnew = gradM wnew) ;
P = p-epsilon*gnew 2;
endf or
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Gaussian approximations

- .

o Taylor expand M (w)

M(w) ~ M(wyp) + %(w —wap)TA(W — wap) & -

® Wwith Hesslan matrix

82

Ajj
/ 8wz ow j

M(w)

W=Wn P

# The Gaussian approximation is defined as:

Q(wW;wyp, A)
= [det(A/Qﬂ)]l/2eXp [—%(w —wyp) Aw — WMP)}
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Gaussian approximations

-

# the second derivative of M (w) with respect to w Is

given by
0’ = (n)_(n)
_ (N ) g
8w¢8ij(W) nz::lf @)z, Ly + adj;
® Wwhere
1
fla)=
o\ = ijwgn)
J
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Gaussian approximations

-

P(alx,D,a) = Normal(aysp,s?)

_ 1 (a—anmp)?
= Vars o (_ 257 )

where
apyp = a(X; Wap)

and
2 =xTA1x



Gaussian approximations

- .

P(t=1|x,D, ) = ¢¥(ayp, s*) = /daf(a)Normal(aMp,SQ)

# Therefore the marginalized output is:

# And further approximation can be applied:

Y(app,s”) ~ dlanp,s”) = f(k(s)anp)

where

K(s) = 1/\/1 + 752 /8
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Exercises

- .

# Practice on counting threshold functions: Ex. 40.6
(page 490)

# Prove the approximation on Hessian matrix: Ex. 41.1
(page 501)
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