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Introduction

• In chapter 3 the Bayes' theorem is applied to inference problems.

• The feasibility of the Bayesian inference is demonstrated through
simple examples.

• Presentation outline
• Example 1: Unstable particles
• Example 2: Bent coin
• Example 3: Legal evidence
• Lesson's learned
• Home exercises



Unstable particles problem

• Unstable particles are emitted from a source and decay at a
distance x, a real number that has an exponential probability
distribution with characteristic length λ. Decay events can only be
observed if they occur in a window extending from x = 1 cm to x =
20 cm. N decays are observed at locations {x1, x2, ... ,xN}. What is
λ?

1 cm

20 cm

x cm



Traditional solution

• Constructing estimators of λ.

• λ is the mean of unconstrained exponential distribution. ->
Sample mean    reasonable starting point for obtaining estimator   .

•                is an appropriate for λ << 20 cm.

• Promising estimators for λ << 20 cm could be found.

• No obvious estimator that would work under all conditions.

• Fitting the model to the data, or a processed version of the data.

• No satisfactory approach based on fitting the density P(x|λ) to a
histogram derived from data could be found.

• What is the general solution to this problem and others like it?
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Probabilistic solution

• Find the (posterior) probability of λ given the data.

• The probability of one data point, given λ is

• Using the Bayes' theorem the posterior is:

• The posterior probability distribution represents the unique and
complete solution to the problem.

• There is no need to invent "estimators" nor do we need to invent
criteria for comparing alternative estimators with each other.
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Graphical interpretation



Example

• For a data set consisting of several points, e.g., the six points
                                     , the likelihood function P({x}|λ) is the product

of the N functions of λ, P(xn|λ).
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Assumptions on inference

• Inference is conditional on assumptions, that are explicit, which
has several benefits:

• Once assumptions are made, the inferences are objective and
unique, reproducible with complete agreement by anyone who has
the same information and makes the same assumptions.

• When the assumptions are explicit, they are easier to criticise, and
easier to modify.

• When we are not sure which of various alternative assumptions is the
most appropriate for a problem, we can treat this question as another
inference task.

• We can take into account our uncertainty regarding such assumptions
when we make subsequent predictions.



Bent coin problem

• A bent coin is tossed F times; a sequence s of heads and tails is
observed (denoted by the symbols a and b). What is the bias of the
coin (pa), and what is the probability that the next toss will result in
a head?

• The solution:

• The probability that F tosses result in a sequence s that contains {Fa,
Fb} counts of the two outcomes is (assumptions are called Η1):

• A uniform prior distribution is assumed:

• The posterior distribution is obtained by multiplying the prior by the
likelihood (and divided by the evidence).
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Inferring the bias

• Assuming Η1 to be true, the posterior probability of pa, given a
string s of length F that has counts {Fa,Fb}, is:
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Predicting the next toss

• The prediction about the next toss, i.e. the probability that next toss
is a head, is obtained by integrating over pa. By the sum rule,
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• Introducing a new hypothesis Η0:

• The source is not really a bent coin but is really a perfectly formed die
with one face painted heads and the other five painted tails ->
Pa = P0 = 1/6

• How probable Η1 is relative to Η0:

Model comparison
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Posterior probability ratio

• The posterior probability ratio of model Η1 to Η0 is:
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Typical behaviour of the evidence



Legal evidence problem

• Two people have left traces of their own blood at the scene of a
crime. A suspect, Oliver, is tested and found to have type O blood.
The blood groups of the two traces are found to be of type O (a
common type in the local population, having frequency 60%) and
of type AB (a rare type, with frequency 1%). Do these data  give
evidence in favour of the proposition that Oliver was one of the two
people present at the crime?



Solution

• Denote with

• S the proposition "Oliver and one unknown person were present".

•    the proposition "two unknown people from the population were
present".

• The prior in this problem is the prior probability ratio between the
propositions S and   .

• The task is to evaluate the contribution made by the data D, that is,
the likelihood ratio,

P(D|S,Η) = pAB

P(D|   ,Η) = 2pOpAB
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Case: Alberto

• Consider the case of another suspect, Alberto, who has type AB.
• Denote S' the proposition "Alberto and one unknown person were

present".
• The likelihood ratio in this case is:

P(D|S',Η)/P (D|   ,Η) =           = 50S
ABp2

1



Another consideration

• Let's imagine that 99% of people are of blood type O, and the rest
are of type AB. Only these two blood types exist in the population.

• Intuitively, we still believe that the presence of the rare AB blood
provides positive evidence that Alberto was there.

• Does the fact that type O blood was detected at the scene favour the
hypothesis that Oliver was present? ->
Everyone in the population would be under greater suspicion.

• The data may be compatible with any suspect of either blood type
being present, but if they provide evidence for some theories, they
must also provide evidence against other theories.



And yet another

• Let's imagine that instead of two people's blood stains there are
ten, and that in the entire local population of one hundred, there are
ninety type O suspects and ten type AB suspects.

• Without any other information, and before the blood test results come
in, there is a one in 10 chance that Oliver was at the scene, since we
know that 10 out of the 100 suspects were present.

• The results of blood tests tell that nine of the ten stains are of type AB,
and one of the stains is of type O. ->
There is now only a one in ninety chance that Oliver was there, since
we know that only one person present was of type O.



The general case

• nO blood stains of individuals of type O are found, and nAB of type
AB, a total of N individuals in all, and unknown people come from a
large population with fractions pO and pAB (there may be other blood
types too).

• The task is to evaluate the likelihood ratio for the two hypotheses:

• S, "the type O suspect and N-1 unknown others left N stains".

•    , "N unknowns left N stains".

• The likelihood ratio is:
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Lessons learned

• The essence of the Bayes' theorem is:

What you know about the world after the data arrive is what you knew
before (prior distribution), and what the data told you (posterior
distribution).

• Probability theory reaches parts that ad hoc (orthodox statistics')
methods cannot reach.

• Inference cannot be done without making assumptions.



Home exercises

• Exercise 3.10. Another example in which the emphasis is not on
priors. You visit a family whose three children are all at the local
school...

• Exercise 3.12. A bag contains one counter, known to be either
white or black...


