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Exact marginalization

p(x|H) =

∫
p(x, y|H)dy

• “..is a macho activity enjoyed by those who are fluent in definite

integration” (MacKay)

• The concept is necessary:

p(x|H) is not the same as p(x|ŷ, H), where ŷ is some fixed value

• In practice possible only for some simple distributions (Gaussian)

and conjugate priors, still quite difficult

• Discrete distributions: sum over all values

Also possible in graphs etc. (Chapters 25, 26)

• Low-dimensional distributions can be discretized



Marginalization vs Point estimates



Laplace’s approximation

• The goal is to approximate normalization constant Z of an

unnormalized probability distribution, Z =
∫

p(x)dx

• Idea: Approximate the distribution by a Gaussian at the mode

• Taylor’s expansion of the logarithm:

ln p(x) = ln p(x0) −
1

2
(x − x0)

T A(x − x0) + ...

• Needs only the posterior mode and matrix of second derivatives

(Hessian matrix, Aij = − ∂2

∂xi∂xj
ln p(x)|x=x0

)

• Easy to compute Z because the normalization constant of the

Gaussian is known



Laplace’s approximation 2/2

• Problem or opportunity:

depends on the basis, i.e., non-linear transformation changes the

approximation (Exercise)

→ find a parameterization that gives approximately normal

distribution

• Approximates only one mode of multimodal distributions



Occam’s razor - Idea

• “Accept the simplest explanation that fits the data”

• Machine learning needs to grasp the same intuition

• Bayesian way of thinking? We could prefer simpler models by giving

them larger prior

• It turns out that we do not need to make such prior assumptions.

Instead, the Occam’s razor is automatically achieved by Bayesian

inference



Two stages of inference

• Model fitting and model comparison

• Fitting: posterior = likelihood×prior

evidence
∝ likelihood × prior

• Comparison: posterior ∝ evidence × prior

• Evidence does what Occam’s razor asks for



Evidence

• Posterior ratio of hypotheses

P (H1|D)

P (H2|D)
=

P (D|H1)

P (D|H2)

P (H1)

P (H2)

• P (D|H) =
∫

P (D|w, H)P (w|H)dw is called the evidence of the

model

• Evidence is the average probability of generating the data by

randomly selecting parameter values

• Simple model: a few data sets, high evidence

• Complex model: numerous data sets, small evidence



Evidence — an illustration



What to do with evidence

• MacKay: Always average over different models, weighting each

model by P (H|D)

• In practice we often need to select one model

• Interpreting the Bayes factor B = P (D|H1)
P (D|H2)

:

Jeffreys (1961) Kass, Raftery (1995)

B Evidence against H2 B Evidence against H2

1 - 3.2 Worth mentioning 1 - 3 Worth mentioning

3.2 - 10 Substantial 3 - 20 Positive

10 - 100 Strong 20 - 150 Strong

> 100 Decisive > 150 Very strong



Computing evidence

• Exact evidence – often impossible

P (D|H) =

∫
P (D|w, H)P (w|H)dw

• Laplace’s method:

P (D|H) ≈ P (D|wMP, H) × P (wMP|H)σ
w|D

Evidence ≈ Best fit likelihood × Occam factor

• Normalization constant ∝ σ
w|D, the standard deviation of the

posterior distribution

• Only MAP-estimate and error bars (Hessian) required



Occam factor

• Occam factor: P (wMP|H)σ
w|D

• Interpretation: Assume flat prior, then P (wMP|H) = 1/σw

→ Occam factor is ratio of posterior and prior widths

• The factor by which hypothesis space collapses when the data arrive

• Logarithm of the factor measures the amount of information gained

about parameters when the data arrive



Occam factor — an illustration



Occam factor - Problems

• The prior has to be proper

• The factor depends on the prior

• Consider two identical models with different priors:

The one with better fitting prior has larger evidence

• Should tweaking the prior lead to higher evidence?

• Conclusion: be careful with Occam factor



Minimum description length and Occam’s
razor

• Instead of probabilities, consider message lengths required to

communicate events without loss

• Message lengths correspond to probabilities by L(x) = − log2 P (x)

• Communicate data with two-part message: the model and the data

given the model L(D, H) = L(H) + L(D|H)

• Sending the model means identifying what model to use and then

sending the parameters of the model

• Corresponds to the Bayesian analysis:

L(D, H) = − log P (H)− log(P (D|H)δD) = − log P (H|D)+ const



Evidence and cross-validation

• Evaluating the evidence has a relation to cross-validation

• De-compose the log-evidence into

log P (D|H) = log P (x1|H)+log P (x2|x1, H)+...+log P (xn|x1, ..., xn−1, H)

• Leave-one-out cross-validation measures the expectation of the last

term log P (xn|x1, ..., xn−1, H) under data re-orderings

• Evidence, on the other hand, measures how well the whole data is

predicted by the model, starting from scratch



Conclusions

• Bayesian inference consists of model fitting and comparison

• Occam’s razor: prefer simpler models — automatically embodied by

evidence of the model

• Computing the evidence in difficult — in practice some

approximations have to be used



Exercises

• Exercise 27.1, page 342: Laplace’s approximation for Poisson

distribution in two bases. Compare the resulting approximations to

the unnormalized posterior, and study the differences in

approximation accuracy.

• Exercise 28.1, page 354: Evaluate the evidences of two competing

models. For H1, assume uniform prior for m. Discretizing the

problem is probably the easiest way of computing the evidence. Why

Laplace’s approximation would not be good here? How would you

interpret the results?


