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Ensembles and probabilities

• Ensemble X is a triple (x,AX,PX), where

– x is the outcome of random variable
– AX = {a1, a2, . . . , aI} are the possible values for x
– PX = {p1, p2, . . . , pI} are the probabilities of outcomes P (x = ai) = pi

– pi ≥ 0
–

∑

ai∈AX
P (x = ai) = 1

• P (x = ai) may be written as P (ai) or P (x)

• Probability of a subset T of Ax

P (T ) = P (x ∈ T ) =
∑

ai∈T

P (x = ai) (1)
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Joint ensembles and marginal probabilities

• Joint ensemble XY

– Outcome is an ordered pair x, y (or xy)
– Possible values AX = {a1, a2, . . . , aI} and AY = {b1, b2, . . . , bJ}
– Joint probability P (x, y)

• Marginal probabilities

P (x = ai) ≡
∑

y ∈AY

P (x = ai, y) (2)

P (y) ≡
∑

x ∈AX

P (y, x) (3)
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Conditioning rules
• Conditional probability

P (x = ai|y = bj) ≡
P (x = ai, y = bj)

P (y = bj)
, P (y = bj) 6= 0 (4)

• Assumptions H

– ”the probability that x equals ai, given H”

• Product (chain) rule

P (x, y|H) = P (x|y,H)P (y|H) = P (y|x,H)P (x|H) (5)

• Sum rule

P (x|H) =
∑

y

P (x, y|H) =
∑

y

P (x|y,H)P (y|H) (6)
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Bayes theorem and independence

• Bayes theorem

P (y|x,H) =
P (x|y,H)P (y|H)

P (x|H)
(7)

=
P (x|y,H)P (y|H)

∑

y′ P (x|y′,H)P (y′|H)
(8)

• Two random variables X and Y are independent (X ⊥ Y ) if and only if

P (x, y) = P (x)P (y) (9)
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Two meanings for probability

• Frequentist view of probability

– Probabilities are frequencies of outcomes in random experiments
– Probabilities describe random variables

• Bayesian view of probability

– Probabilities are degrees of belief in propositions
– Probabilities describe assumptions, and inferences given assumptions
– Subjective intepretation of probability

“you cannot do inference without making assumptions”
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Forward and inverse probabilities

• Assume generative model describing a process giving rise to some data

• Forward probability

– Task is to compute probability distribution of some quantity that depends on data

• Inverse probability

– Task is to compute probability distribution of unobserved variables given data
– Requires use of Bayes’ theorem
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Inference with inverse probabilities

• Inference on parameters θ given data D and hypothesis H by Bayes’ theorem

P (θ|D,H) =
P (D|θ,H)P (θ|H)

P (D|H)
, (10)

where

P (θ|H) is the prior probability for parameters
P (D|θ,H) is the likelihood of the parameters given the data
P (D|H) is the evidence
P (θ|D,H) is the posterior probability for parameters

• in written

posterior =
likelihood × prior

evidence
(11)
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Shannon information and entropy

• Shannon information content of an outcome x = ai (bits)

h(x = ai) = log2

1

P (x = ai)
(12)

• Entropy of an ensemble X (bits)

H(X) ≡
∑

x∈AX

P (x)log
1

P (x)
(13)

• Joint entropy of X, Y

H(X, Y ) ≡
∑

xy∈AXAY

P (x, y)log
1

P (x, y)
(14)
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Decomposability of entropy

• Entropy of probability distribution p = {p1, p2, . . . , pI}

H(p) = H(p1, 1 − p1) + (1 − p1)H

(

p2

1 − p1

,
p3

1 − p1

, . . . ,
pI

1 − p1

)

(15)

• More generally

H(p) = H[(p1 + p2 + . . . + pm), (pm+1 + pm+2 + . . . + pI)]

+(p1 + . . . + pm)H

(

p1

(p1 + . . . + pm)
, . . . ,

pm

(p1 + . . . + pm)

)

(16)

+(pm+1 + . . . + pI)H

(

pm+1

(pm+1 + . . . + pI)
, . . . ,

pI

(pm+1 + . . . + pI)

)

Juha Raitio 5th February 2004

11

Relative entropy

• Kullback-Leibler divergence between P (x) and Q(x) over alphabet AX

DKL(P‖Q) =
∑

x

P (x) log
P (x)

Q(x)
(17)

• Properties of relative entropy

– Gibbs’ inequality: DKL(P‖Q) ≥ 0 and DKL(P‖Q) = 0, if P = Q
– in general DKL(P‖Q) 6= DKL(Q‖P )
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Convex and concave functions

• f(x) is convex over (a, b), if for all x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1

f(λx1 + (1 − λ)x2) ≤ λf(x1) + (1 − λ)f(x2) (18)

• f(x) is concave is the above above holds for f with the inequities reversed

• f(x) is strictly convex (concave) if the equality in (18) holds only for λ = 0 and
λ = 1

• Jensen’s inequality for convex function f(x) of random variable x

E [f(x)] ≥ f (E [x]) , where E denotes expectation (19)

• If f(x) is convex (concave) and ∇f(x) = 0, then f has its minimum (maximum)
value at x
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Problems

1. A circular coin of diameter a is thrown onto a square grid whose squares are
b × b , (a < b). What is the probability that the coin will lie entirely within one
square? (MacKay exercise 2.31)

2. The inhabitants of an island tell the truth one third of the time. They lie with
probability 2/3. On an occasion, after one of them made a statement, you ask
another ’was the statement true?’ and he says ’yes’. What is the probability that the
statement was indeed true? (MacKay exercise 2.37)
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