Chapter 1:

Introduction to Information Theory

Book: "Information Theory, Inference, and Learning Algorithms"

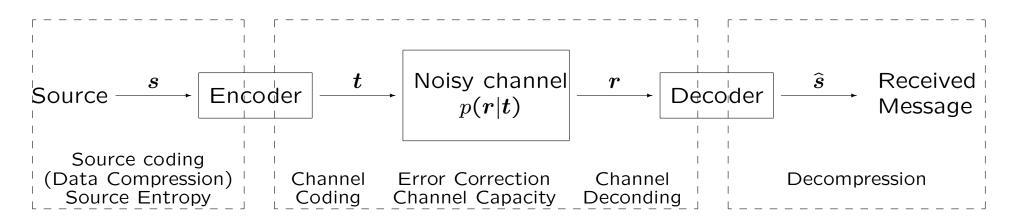
from David MacKay

Examples - System solution - Channel models - Binary symmetric Channel

- Modem \rightarrow phone line \rightarrow modem Parental cell \rightarrow DNA \rightarrow daughter cells
- ESA \rightarrow radio waves in space \rightarrow Beagle 2 • RAM \rightarrow hdd \rightarrow RAM

How to reduce the probability of error?

Examples - System solution - Channel models - Binary symmetric Channel



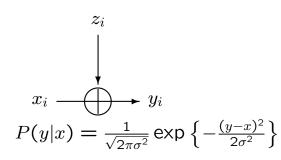
- Data Compression (Removing Redundancy)
 → Source Coding Theorem: What compression rates are achievable
 - compression rates are achievable.
- Error Correction (Adding redundancy)
 → Channel Coding Theorem:

What transmission rates are acievable with infinitely small error.

- Encryption: Between Source- and Channel Coding
- Decoding & Encoding should be fast.

Examples - System solution - Channel models - Binary symmetric Channel

• Gaussian channel:



- Noiseless binary channel:
 - 0 ------ 0

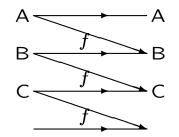
 $1 \longrightarrow 1$ P(y = 0 | x = 0) = P(y = 1 | x = 1) = 1 • Binary symmetric channel:

$$0 \xrightarrow{(1-f)} 0$$

$$y \xrightarrow{f} \\ 1 \xrightarrow{f} \\ 1 \xrightarrow{(1-f)} 1$$

$$P(y=0|x=0) = 1 - f \quad P(y=0|x=1) = f \\ P(y=1|x=0) = f \quad P(y=0|x=0) = 1 - f$$

• Noisy typewriter channel



 $P(y = A | x = A) = 1 - f \quad P(y = B | x = A) = f$ $P(y = B | x = B) = 1 - f \quad P(y = C | x = B) = f$...

Repetition Codes - Block Codes - Channel capacity

Coding Theory

• The object of coding is to introduce redundancy so that if some of the information is lost or corrupted, it will still be possible to recover the message at the receiver.

Repetition Codes - Block Codes - Channel capacity

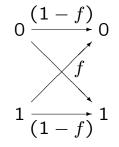
Repetition Codes (e.g. \mathcal{R}_3 : $0 \rightarrow 000$ and $1 \rightarrow 111$)

• Optimal decoding?

Most probable p(s|r)

• For a single bit $P(s|r_1r_2r_3) = \frac{P(r_1r_2r_3|s)P(s)}{P(r_1r_2r_3)}$

• if
$$P(s = 1|r) > P(s = 0|r)$$
 decode
 $\hat{s} = 1$ else $\hat{s} = 0$
BSC: $P(r|s) = P(r|t(s)) = \prod_{n=1}^{3} P(r_n|t_n(s))$



Odds ratio:

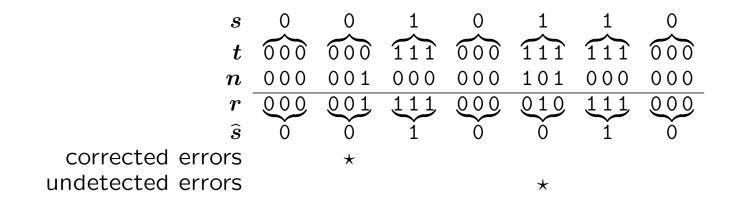
$$\frac{P(s=1|\boldsymbol{r})}{P(s=0|\boldsymbol{r})} = \frac{P(\boldsymbol{r}|s=1)}{P(\boldsymbol{r}|s=0)} = \prod_{n=1}^{3} \frac{P(r_n|t_n(1))}{P(r_n|t_n(0))}$$

- assume: $p(0) = p(1) = \frac{1}{2}$
- bin. sym. channel

•
$$\frac{P(r_n|t_n(1))}{P(r_n|t_n(0))} = \begin{cases} \frac{(1-f)}{f} & : r_n = 1\\ \left(\frac{(1-f)}{f}\right)^{-1} & : r_n = 0 \end{cases}$$

Repetition Codes - Block Codes - Channel capacity

Received sequ	Hence $m{r}$ Likelihood ratio $rac{P(m{r} s=1)}{P(m{r} s=0)} \left(\gamma + \frac{1}{2}\right)$	$=rac{1-f}{f}\gg 1ig)$ Decoded sequence \widehat{s}
000 001 010 100 101 110 011 111	$\begin{array}{c} \gamma^{-3}\\ \gamma^{-1}\\ \gamma^{-1}\\ \gamma^{-1}\\ \gamma^{1}\\ \gamma^{1}\\ \gamma^{1}\\ \gamma^{1}\\ \gamma^{3}\\ \gamma^{3}\end{array}$	0 0 0 0 1 1 1 1

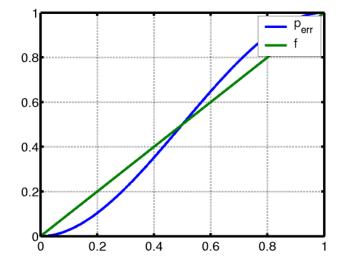


Repetition Codes - Block Codes - Channel capacity

What do we gain by using \mathcal{R}_3 ?

Two possibilities for errors, which follow the binomial distribution: $p(e|f, N) = {N \choose r} f^e (1-f)^{N-e}$

- All three bits flipped $p_{\#3} = f^3$
- Just two bits flipped $p_{\#2} = 3f^2(1-f)$



Probability of error in \mathcal{R}_3 is $p_B = p_b = f^3 + 3f^2(1-f) = 3f^2 - 2f^3$

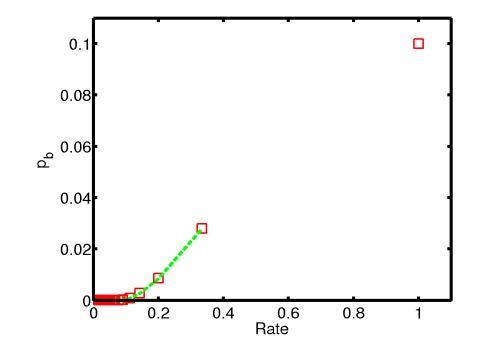
Repetition Codes - Block Codes - Channel capacity

Error rate of \mathcal{R}_N Codes

• Error when at least $\lceil N/2 \rceil$ bits in one block are flipped.

$$p_B = \sum_{n=(N+1)/2}^{N} {N \choose n} f^n (1-f)^{N-n}$$

- For small f this term is dominated by $n = \frac{(N+1)}{2}$.
- Def.: The (transmission) rate $R = \frac{\log(\mathcal{M})}{N}$ bits per transmission.
- The rate of \mathcal{R}_3 is $R = \frac{1}{3}$.



• Concatenated codes: $\mathcal{R}_3^2 = \mathcal{R}_3 \circ \mathcal{R}_3$ $p_b(\mathcal{R}_3^2) \approx 3 (3f^2)^2 = 27f^4$ $p_b(\mathcal{R}_9) \approx {9 \choose 5}f^5(1-f)^4 \approx 126f^5$ but \mathcal{R}_3^2 requires less computation

Repetition Codes - Block Codes - Channel capacity

• Parity check code:

t7

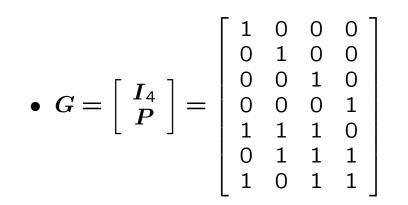
s4

(7,4) - Hamming Code: information bits parity bits $\underbrace{s_1 \ s_2 \ s_3 \ s_4 \ t_5 \ t_6 \ t_7}^{t_5}$

1

t6

• linear code: t = Gs



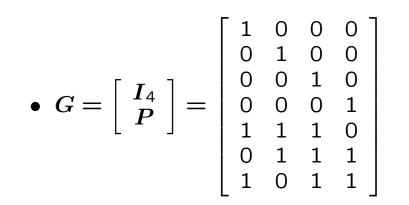
$oldsymbol{s}$	t	s	t	$oldsymbol{s}$	t	$m{s}$	t
0000	0000000	0100	0100110	1000	1000101	1100	1100011
0001	0001011	0101	0101101	1001	1001110	1101	1101000
0010	0010111	0110	0110001	1010	1010010	1110	1110100
0011	0011100	0111	0111010	1011	1011001	1111	1111111

Repetition Codes - Block Codes - Channel capacity

• Parity check code:

(7, 4) - Hamming Code: information bits parity bits t_7 t_5 t_6 s_1 s_2 s_3 S4t5 s2 0 s1 s3 t7 t6 1 s4

• linear code: t = Gs



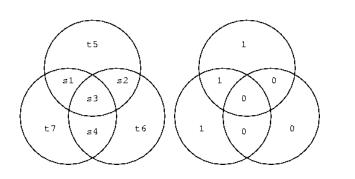
\boldsymbol{s}	t	\boldsymbol{s}	t	\boldsymbol{s}	t	$oldsymbol{s}$	t
0000	0000000	0100	0100110	1000	1000101	1100	1100011
0001	0001011	0101	0101101	1001	1001110	1101	1101000
0010	0010111	0110	0110001	1010	1010010	1110	1110100
0011	0011100	0111	0111010	1011	1011001	1111	1111111

Repetition Codes - Block Codes - Channel capacity

• Parity check code:

(7,4) – Hamming Code : information bits parity bits

 $s_1 \ s_2 \ s_3 \ s_4 \ t_5 \ t_6 \ t_7$



• linear code: t = Gs

• $G = \begin{bmatrix} I_4 \\ P \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix}$

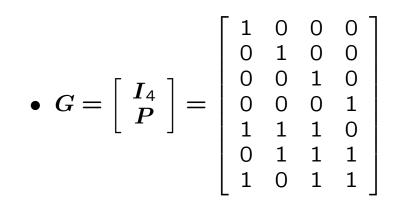
$oldsymbol{s}$	t	\boldsymbol{s}	t	$oldsymbol{s}$	t	$oldsymbol{s}$	t
0000	0000000	0100	0100110	1000	1000101	1100	1100011
0001	0001011	0101	0101101	1001	1001110	1101	1101000
0010	0010111	0110	0110001	1010	1010010	1110	1110100
0011	0011100	0111	0111010	1011	1011001	1111	1111111

Repetition Codes - Block Codes - Channel capacity

• Parity check code:

(7, 4) - Hamming Code: information bits parity bits t_7 t_5 t_6 s_1 s_2 s_3 S_4 t5 s2 0 s1 s3 t7 t6 1 s4

• linear code: t = Gs



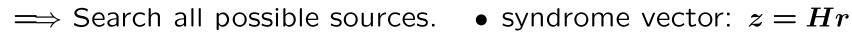
\boldsymbol{s}	t	s	t	\boldsymbol{s}	t	\boldsymbol{s}	t
0000	0000000	0100	0100110	1000	1000101	1100	1100011
0001	0001011	0101	0101101	1001	1001110	1101	1101000
0010	0010111	0110	0110001	1010	1010010	1110	1110100
0011	0011100	0111	0111010	1011	1011001	1111	1111111

Repetition Codes - Block Codes - Channel capacity

Decoding scheme

- Minimal *distance* between code *parity-check matrix:* words is 3
- For the binary symmetric channel and equiprobable source vectors *s* One deconding scheme is to take the "closest" vector

 $\min_{s} d(r, t(s))$



$$H = \begin{bmatrix} P & I_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$Ht = \begin{bmatrix} 0\\0\\0 \end{bmatrix}$$

Repetition Codes - Block Codes - Channel capacity

Correcting Errors

• Example:

 Transmit s = 1000

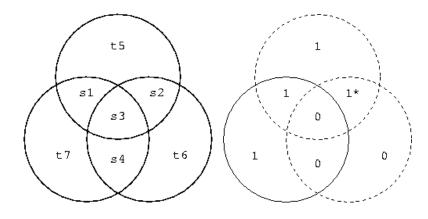
 Encoded t = 1000101

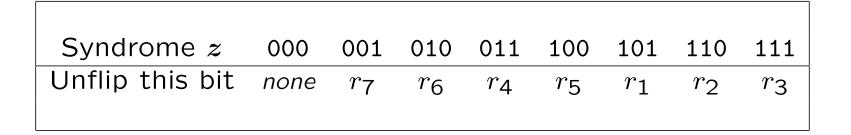
 Noise n = 0100000

 Received r = 1100101

• $z = Hr = \begin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}^{\mathsf{T}}$

• Pictoral solution:





Repetition Codes - Block Codes - Channel capacity

Properties of the (7,4)-Hamming codes

- 8 syndromes (7 errors, 1 for the zero noise) are most probably caused by one error.
- What if *n* has wight 2?
- Example:

Transmit s = 1000Encoded t = 1000101Noise n = 0100010Received r = 1100111

• $z = Hr = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^{\mathsf{T}} \rightarrow \text{flip } r_5$ $\hat{s} = 1100011$ codeword *distance*: 3

 → Only when 2 or more bits are flipped we get errors.

Block error: $p_B = \sum_{r=2}^{7} {7 \choose r} f^r (1-f)^{7-r}$.

Bit error:
$$p_b = \frac{3}{7}p_B$$

The leading term for small f is $21f^2 \implies p_B \approx O(f^2)$

• The rate is $R = \frac{4}{7}$

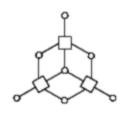
Repetition Codes - Block Codes - Channel capacity

Symmetry of the (7,4)-Hamming code

- Parity check matrix $H = \begin{bmatrix} P & I_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{bmatrix}$
- $(t_1t_2t_3t_4t_5t_6t_7) \rightarrow (t_5t_2t_3t_4t_1t_6t_7)$

	[1	1	1	0	1	0	0]
$\rightarrow H =$	0	1	1	1	0	1	0
	0	0	1	1	1	0	1

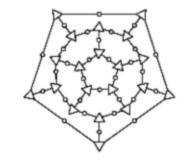
• (7,4)-Hamming Code



- (30,11)-Hamming Code
- Adding two parity constaints leads to a new one $(1) + (2) = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$ which checks $t_5 + t_1 + t_4 + t_6 = even$.

$$H = \begin{bmatrix} 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

But $\{t: Ht = 0\}$.



Repetition Codes - Block Codes - Channel capacity

Howmany bit errors are corrected

- Example: Can (14,8)-Hamming Code two errors?
- Count the error patterns:

$$\binom{N}{0} + \binom{N}{1} + \binom{N}{2}$$

for N = 14 there are 106 patterns.

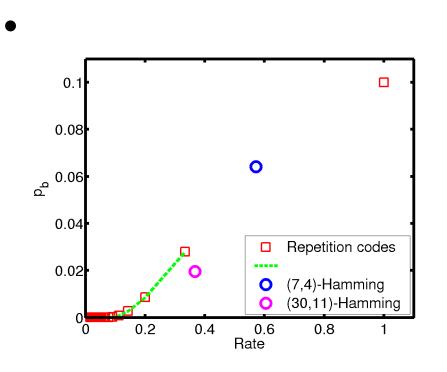
• Every error musst give rise to one syndrom. • For *M* parity pits, there are 2^{*M*} syndroms.

For M = 6 this is 64.

 → The (14,8)-Hamming Code does not correct two erros. (The (30,11) does)

Repetition Codes - Block Codes - Channel capacity

Performance of codes



• Which points in the plain can be achieved?

- It was thought that to get error
 - \rightarrow 0 the rate \rightarrow 0.

Repetition Codes - Block Codes - Channel capacity

Noisy-Channel Coding Theorem:

 $\forall \epsilon > 0$ and R < C, there exists a code of sufficiently large length N, with rate $\geq R$ and block error $< \epsilon$.

• The *capacity* of channel Q is

$$C(Q) = \max_{p(X)} \{I(X;Y)\}$$

It is maximized by some optimal input distribution $p^*(X)$.

• Proof outline

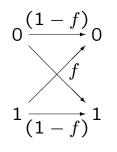
- Average block error of all random codes.

- Jointly typical sequences:

$$\left|\frac{1}{N}\log\left\{\frac{1}{p(\boldsymbol{x},\boldsymbol{y})}\right\}-H(X,Y)\right|<\beta$$

probability of ${m x}, {m y}$ being jointly typical ightarrow 1 for $N
ightarrow \infty.$

• Example: binary symmetric channel with f = 1/10:



$$I(X;Y) = H(Y) - H(Y|X)$$

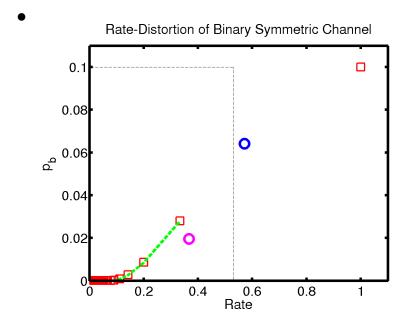
= $H(Y) - \sum_{i \in \{0,1\}} p(x=i)H(Y|x=i)$
= $H(Y) - \left[f \log(\frac{1}{f}) + (1-f)\log(\frac{1}{1-f})\right]$

$$\leq 1 - \left[f \log(\frac{1}{f}) + (1 - f) \log(\frac{1}{1 - f})\right]$$

$$\rightarrow C(bsc) = 0.5310$$

Repetition Codes - Block Codes - Channel capacity

Rate-distortion Theory



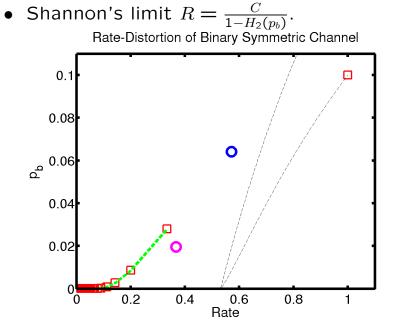
- Communication with error above C.
- Noiseless Channel

0 ---- 0

 $1 \longrightarrow 1$

• C = 1 bit per channel use.

- Force communication at R > C.
- How to achieve the smallest possible p_b ? \rightarrow Communicate only $\frac{1}{R}$ and let receiver guess the missing fraction $(1 - \frac{1}{R})$. $\rightarrow p_b = \frac{1}{2}(1 - \frac{1}{R})$



Conclusion

- Repetition Codes
- Hamming Codes Linear, parity checking

• Channel coding Theorem

• Rate-distortion Theory