T-61.182 Special course in information science II Information theory and machine learning

Exercise 1 (inference and variance)

For a normal distribution in two variables with

$$C = \left[\begin{array}{rrr} 1 & 0.75\\ 0.75 & 0.75 \end{array} \right]$$

as covariance and zero mean, compute the variance in terms of the first variable if the second one is observed, and vice versa.

Exercise 2 (Samples from a Gaussian Process prior)

Draw a sample \boldsymbol{X} at random from the uniform distribution on $[0, 1]^2$ and compute the corresponding covariance matrix \boldsymbol{C} . Use for instance the linear covariance function $C(\boldsymbol{x}, \boldsymbol{x}') = \boldsymbol{x}\boldsymbol{x}'$ and the Gaussian RBF covariance function $C(\boldsymbol{x}, \boldsymbol{x}') = \exp\left\{-\frac{1}{2\sigma^2}\|\boldsymbol{x} - \boldsymbol{x}'\|^2\right\}$. Write a program which draws samples uniformly from the normal distribution

Write a program which draws samples uniformly from the normal distribution $\mathcal{N}(0, \mathbf{C})$ (Hint: Compute the eigenvectors of \mathbf{C} first). What difference do you observe when using different covariance functions?

Exercises are from Schölkopf & Smola: Learning with Kernels