
Implementation of Regular Approximation of

Contex-Free Grammars Through Transformation

Tapani Raiko

May 6, 2003

Abstract

In [1], Mohri and Nederhof presented an algorithm for approximating
context-free languages with regular languages. My project work is the
implementation of the algorithm using Prolog. The algorithm is tested on
the arithmetic expressions example.

1 Introduction

In most real-time applications, general context-free grammars are computa-
tionally very demanding for demanding applications (such as real-time speech
recognition). This downside can be avoided by approximationg context-free
languages with regular languages. They can be further transformed into finite
automata for practical reasons. Some context-free languages need to be ap-
proximated with regular languages for the transformation. The approximation
implemented here is straightforward but not the only option.

2 Transformation

Any grammar can be transformed into a strongly regular grammar approxima-
tively which means that the language generated by the strongly regular grammar
is a superset of the original. In our case, all the rules in the strongly regular
grammar are right-linear. The size of the resulting grammar is at most twice
that of the input grammar. The transformation is defined as follows.

For each nonterminal A:
Introduce a new nonterminal A′ (interpreted as “after A”).
Add the rule A′

→ ε. (ε is the empty string)
Replace each rule of the form
A → α0B1α1B2α2 . . . Bmαm,
where α are terminals
by the following set of rules:

1

F’−>T’

F−>(E

E’−>)F’

F−>aF’

a

+
*

)(

T−>F

T’−>.

E’−>.

F−>a

F−>(E)

E−>E+T

E−>T

T−>T*F

T−>F

F’−>. F’−>T’

T’−>*F

T−>T

T’−>E’

E−>E

E’−>+T

T’−>E’

E−>T

Figure 1: A grammar and its transformation representing arithmetic expres-
sions. E stands for an expression, T for a term and F for a factor. The
transformed grammar is equivalent to the finite state machine on the right.

A → α0B1

B′

1
→ α1B2

B
′

2
→ α2B3

. . .

B′

m−1
→ αm−1Bm

B′

m
→ αmA′

The nonterminal A′ can be interpreted as “after A”. Thus the rule B′

1
→

α1B2 could be interpreted as: If we just saw B1, it is possible to continue with
α1B2, since it was part of the original rule A → α0B1α1B2α2 . . . Bmαm. From
this, it is clear that the transformed language is a superset of the original.

3 Implementation and Testing

I implemented the transformation using GNU Prolog 1.2.161. The source code is
included as Appendix B. The original grammar (Figure 1) is represented using
the dynamic predicate rule/2. The predicate parse/3 implements a simple (and
inefficient) parsing of a string using the grammar. The same predicate can be
used to generate all parses up to length N . The predicate transform/1 does the
transformation explained in Section 2. The rules are asserted to the program
itself. If the original grammar has a nonterminal A, the transformed grammar
will have the nonterminals b(A) and e(A) corresponding to A and A′ accordingly.

An example run is shown in Appendix A. The command test(3) gives all
possible parses of expression E up to length 3 using both the original grammar
and its transformation. Note that the original language gives four parses: a+a,
a ∗ a, (a) and a whereas the transformed language gives the same ones and four
others: ((a, (a, a)) and a). Note that a strongly regular grammar does not have
the expressive power to check whether the parentheses match or not.

1http://pauillac.inria.fr/∼diaz/gnu-prolog/

2

References

[1] M.-J. N. Mehryar Mohri, “Regular approximation of context-free grammars,” in
Robustness in Language and Speech Processing (J.-C. Junqua and G. van Noord,
eds.), pp. 251–261, Kluwer Academic Publishers, 2000.

A Example Run

james (8) ./gprolog

GNU Prolog 1.2.16

By Daniel Diaz

Copyright (C) 1999-2002 Daniel Diaz

| ?- consult(’~/transform.pl’).

compiling /home/praiko/transform.pl for byte code...

/home/praiko/transform.pl compiled, 144 lines read - 11485 bytes written, 187 ms

(23 ms) yes

| ?- test(3).

Parses using the original grammar:

[[a,+,a],[a,*,a],[(,a,)],[a]]

Parses using the transformed grammar:

[[(,(,a],[(,a,)],[(,a],[a,+,a],[a,),)],[a,)],[a,*,a],[a]]

(10 ms) yes

B Source Code

% Write out all parses of an arithmetic expression with the

% length restricted to N. Use first the original and then the

% transformed grammar.

test(N) :-

findall(X, parse([’E’],X,N), Parses1),

write(’Parses using the original grammar:’),nl,

write(Parses1), nl, nl,

transform(_),

findall(Y, parse([b(’E’)],Y,N), Parses2),

remove_duplicates(Parses2, Parses2b),

write(’Parses using the transformed grammar:’),nl,

write(Parses2b).

:- dynamic(rule/2).

% The original grammar

rule(’E’,[’E’,’+’,’T’]).

3

rule(’E’,[’T’]).

rule(’T’,[’T’,’*’,’F’]).

rule(’T’,[’F’]).

rule(’F’,[’(’,’E’,’)’]).

rule(’F’,[’a’]).

% Is X a nonterminal symbol?

nonterminal(X) :-

rule(X,_).

% Is X a terminal symbol?

terminal(X) :-

\+ nonterminal(X).

% parse(StringAbs,StringGround,MaxLength).

% applies rules to the abstract string producing the ground string in the end.

% maxlength is the maximum length for the string.

% done?

parse([],[],_) :- !.

% is the string already too long?

parse(AString,_,MaxLength) :-

my_length(AString, Length),

Length > MaxLength, !,

fail.

% found a terminal, move to the rest.

parse([A|ARest],[G|GRest],MaxLength) :-

terminal(A),

A = G,

ML1 is MaxLength - 1,

parse(ARest,GRest,ML1).

% found a nonterminal, apply a rule.

parse([A|ARest],GString,MaxLength) :-

rule(A,SubString),

append(SubString, ARest, AStringNew),

parse(AStringNew,GString,MaxLength).

% transform finds the transformed rules and asserts them to the program

transform(NewRules) :-

retractall(rule(b(_),_)),

retractall(rule(e(_),_)),

findall(rule(NonT,Str),

rule(NonT,Str),

OldRules),

transform(OldRules,NewRules,[]),

assertall(NewRules).

4

% transform(OldRules, NewRulesRest, RejectThese)

% the rejection list is just for removing duplicates.

transform([],[],_).

transform([OldRule|ORest],OutNewRules,Reject) :-

transform_rule(OldRule,TransformSet),

cleanup_rules(TransformSet, Accepted, Reject),

append(Reject, Accepted, Reject2),

transform(ORest, InNewRules, Reject2),

append(InNewRules, Accepted, OutNewRules).

% transforms a single rule. Returns a list of rules

transform_rule(rule(X,String), [rule(e(X),[])|TransRules]) :-

new_rules(b(X), [], String, e(X), TransRules).

% new_rules(NonTerminal, Terminals, StringRest, FinalNonTerminal, ResultingRules)

% the original rule string is now empty

new_rules(NTer, Terminals, [], FinalNonTerminal, [rule(NTer,RuleString)]) :- !,

append(Terminals, [FinalNonTerminal], RuleString).

% found a terminal. Move it to the terminal list from the rule string

new_rules(NTer, Terminals, [Sym|Symbols], FinalNonTerminal, Rules) :-

terminal(Sym), !,

append(Terminals, [Sym], Terminals2),

new_rules(NTer, Terminals2, Symbols, FinalNonTerminal, Rules).

% found a nonterminal. Make a new rule.

new_rules(NTer, Terminals, [Sym|Symbols], FinalNonTerminal,

[rule(NTer,NewRuleString)|Rules]) :-

append(Terminals, [b(Sym)], NewRuleString),

new_rules(e(Sym), [], Symbols, FinalNonTerminal, Rules).

% end of the main part. some utilities for removing duplicates etc. follow:

% identity_rule is a rule like T->T which makes no sense.

identity_rule(rule(X,[X])).

% cleanup_rules(OriginalSet,Result,RemoveThese).

% for removing duplicates and identity rules.

cleanup_rules([],[],_).

cleanup_rules([X|XRest],Result,Remove) :-

member(X,Remove), !,

cleanup_rules(XRest,Result,Remove).

cleanup_rules([X|XRest],Result,Remove) :-

identity_rule(X), !,

cleanup_rules(XRest,Result,Remove).

cleanup_rules([X|XRest],[X|YRest],Remove) :-

cleanup_rules(XRest,YRest,Remove).

5

% assert all members of a list

assertall([]).

assertall([X|Xs]) :-

asserta(X),

assertall(Xs).

% my_length/2 is like normal length/2 except that it does not count

% any members of the form e(_).

% Other symbols will always produce at least one terminal.

my_length([], 0).

my_length([e(_)|Rest],N) :- !,

my_length(Rest,N).

my_length([_|Rest],N1) :-

my_length(Rest,N),

N1 is N + 1.

% removes duplicates from input list (arg 1) and gives the result as arg 2

remove_duplicates([],[]).

remove_duplicates([X|Rest1],Rest2) :-

member(X,Rest1), !,

remove_duplicates(Rest1,Rest2).

remove_duplicates([X|Rest1],[X|Rest2]) :-

remove_duplicates(Rest1,Rest2).

6

