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1 Introduction

The performance of speaker independent automatic speech recognizers (ASR) nowadays
is sufficient to be applied to many realistic tasks. However, it is very common that
an ASR system works well for most of its users, but for some speakers its performance
is significantly degraded. To circumvent this problem one modifies all or some of the
ASR parameters so that the ASR system gets matched to the particular speaker. Such
a process, which generally is called speaker adaptation, can be performed by retraining
ASR system in the so-called batch adaptation way after a sufficient amount of speaker
data is available, or the speaker can be adapted in an online manner, when one updates
parameters each time the new data arrives [12]. The most challenging is that ASR system
involves many thousands of parameters, which, in general, require very large amount of
speaker data to be re-estimated reliably. A great success has been achieved by applying
the so-called Bayesian adaptation methods and a brief overview of them is presented here.
First, a general issues are briefly mentioned concerning basics of the ASR giving emphasis
on the phonetic level modelling. Then a hierarchical Bayesian estimation paradigm is
stated. Finally, a short assessment of some of the selected results available in the ASR
literature is given to show what improvement one might expect when applying various
speaker adaptation techniques.

2 HMM-based speech recognition model

Here I present the basic levels of a continuous automatic speech recognition system so
that a reader later will understand ‘what and where’ is actually adapted.

2.1 Speech recognition system

A general model of an ASR system is shown in Fig. 1. It comprises several different levels
of hierarchy:

Acoustic level modelling processes raw speech data and produces the likelihood that
a given speech segment belongs to a particular phoneme class.

Lexical modelling receives a sequence of phonemes, each given the importance weight
by its corresponding likelihood value. Given different pronunciation models and
lexical rules of phoneme composition, lexical modelling comprises a search engine
that produces the likelihood of a word given a phoneme sequence.

Language modelling. Given as an input a set of hypothesized word sequences, it allows
to select the best word sequence (sentence) by using the so-called bigram or trigram
word sequence likelihoods P (wt|wt−1, wt−2), which are usually estimated from a large
text corpus.



The adapation of the ASR system to particular speaker is usually performed on the
phoneme modelling level. Thus from now on we will focus on this part of the ASR
process. As for the speaker adaptation in the higher levels of the ASR system hierarchy,
the interested reader is referred to [2].
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Figure 1: A generic speech recognition model.

More detailed overview of the acoustic modelling is shown in Fig. 2. Predominant num-
ber of the phonetic level modelling systems is implemented by using a feature extractor
followed by a statistical pattern recognizer, which is normally a hidden Markov model
(HMM) [25]. In this report I discuss the Bayesian speaker adaptation in the sense how
the parameters of such a phoneme level system are adapted to a speaker, and what im-
provement one might expect to achieve. Below a short overview of an HMM is presented.
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Figure 2: Acoustic level model.

2.2 Hidden Markov Model

2.2.1 Maximum likelihood sequence recognition

Hidden Markov model [25] is a stochastic approach to generate sequences. It starts by
first producing a state sequence according to some random process specified by the so-
called state transition matrix A = aij which defines the probability that state st = j will
follow state st−1 = i. Then, the sequence of the observed vectors O = {ot, t = 1 . . . T} can
be generated according to the probability distribution bst

(ot) attached to each state st.
An HMM will shortly be denoted as θ = {A,B, π}, where B denotes all the parameters
of the state observation probability densities. In our case they are Gaussian mean and
covariance matrices of the gaussian state observation probability distributions

bi(ot) =
1

(2π)d/2|Σi|
1

2

exp[−1

2
(ot − µi)

TΣ−1

i (ot − µi)], (1)



An HMM classifier provides the unknown observation sequence Om with the likelihood
P (Om|θs) that a particular model θs produced a given phoneme Om. Then one could
make a decision about which class the unknown phoneme belongs to by choosing the
maximum likelihood model θlm = arg maxθs

P (Om|θs).

The HMM likelihood can be written in a more detailed way as:

p(O|θ) =
∑

s1,s2,··· ,sT

p(O|S, θ)p(S|θ) (2)

=
∑

s1,s2,··· ,sT

πs1
bs1

(o1) · · · bsT
(oT )as1s2

(o1) · · ·asT−1sT
(oT )

The above-stated equation cannot be evaluated directly, but this problem is solved by
means of dynamic programming [25] resulting in either the forward-backward recursions
to evaluate the exact value of the likelihood or the so called Viterbi matching, when
instead of performing a complete summation one approximates the likelihood by a single
term given by the state sequence that provides the maximum joint probability P (O,S|θ).

2.2.2 Maximum likelihood HMM parameter estimation

The HMMs are estimated by minimizing the negative log-likelihood of the training pat-
terns generated by the models of their corresponding labels:

EML = − ln P (O1, . . . ,OM |θ1, . . . , θK)

= −
M

∑

m=1

ln P (Om|θlm). (3)

By a virtue of the independence assumption used in the second line, the maximum likeli-
hood is greatly simplified: each model can now be trained separately by using only those
training sequences that match the model. This can be performed by using the so called
Baum-Welch algorithm which maximizes the likelihood of the observed sequence by it-
eratively performing two consecutive steps. First, it averages the logarithm of the joint
probability of the observation sequence and the state sequence P (O,S|θ) over all states.
The auxiliary function Q(θ′, θ) of the unknown model parameters θ is obtained (E-step).
Then the maximization over θ is performed and θ′ is updated by the optimal solution θ̂.

• E-step: average logarithm of joint probability function:

Q(θ′, θ) =
∑

S

P (O,S|θ′) lnP (O,S|θ), (4)

where θ′ are the current model parameters.

• M-step: maximize Q(θ′, θ) over θ to obtain θ̂ and set θ′ = θ̂.

Such an algorithm can be intuitively understood by considering its simplified form, which
is called segmental K-means clustering [14]. According to such an approach, one replaces



the expectation step by determining only the best state sequence Ŝ and considering only its
corresponding term ln P (O, Ŝ|θ) instead of the summation in Eq. (4). The maximization
step is then performed by assigning each observation to its corresponding state and then re-
estimating the parameters of the state observation densities based on the newly attached
to each state observation data. For example, the mean vector µi of each state si can be
updated by using an averaging

µi =
1

H

∑

h

oh, (5)

where the index h runs over those observations that are attached to the state i after
selecting the best state sequence Ŝ.

3 Bayesian adaptation methodology

Bayesian speaker adaptation is based on the estimation of the model parameters by using
Bayes theorem:

p(θlm |Om, βlm , αlm) =
p(Om|θlm , βlm)p(θlm |αlm)

p(O)
, (6)

If we compare (6) with (3), we can see, that such an equation utilizes the prior probability
distribution p(θlm |αlm) of the unknown phoneme model θlm best representing a phoneme
speech data Om. Thus, Bayesian approach can be viewed as a balance law between the
term specified by our data, and the term that represents our a priori knowledge about
the parameter values:

EBS =
M

∑

m=1

lnP (Om|θlm, βlm) + p(θlm |αlm). (7)

In addition, the Bayesian approach also allows to consider the set of hyperparameters αlm

and βlm that control the prior and likelihood distributions. The prior distribution p(θ|α)
is often chosen to be gaussian function

p(θ|α) =
( α

2π

)

exp
(

−α

2
||θ||2

)

, (8)

so that α represents the inverse variance of the prior parameter values, and β might be the
inverse variance of the noise in the likelihood function, such as the one shown in Eq. (1).

In summary, a hierarchical Bayesian parameter adaptation is to

• estimate the model parameters θ:

P (θ|O, α, β,Hi) =
P (O|θ, β,Hi)P (θ|α,Hi)

P (O|α, β,Hi)
(9)



• set hyperparameters

P (α, β|O,Hi) =
P (O|α, β,Hi)P (α, β|Hi)

P (O|Hi)
(10)

• compare models
P (Hi|O) ∝ P (O|Hi)P (Hi). (11)

Hyperparameter estimation is usually performed by implementing the steepest descent on
the negative log-likelihood of the Bayesian evidence P (O|α, β,Hi) [21]. Such a criterion
usually is obtained by integrating P (O, θ|α, β,Hi) w.r.t. model parameters θ, resulting
in what is known as the evidence approach [20]. This method is often applied in many of
the modern hierarchical Bayesian speaker adaptation techniques, see for example [27, 16,
35, 24]. However, other criteria has also been used to determine the hyperparameters of
the speaker adaptive ASR system [28].

4 Brief review of selected Bayesian techniques

In this section, a brief overview of some of the ideas pertaining to Bayesian approaches
to speaker adaptation is presented. The techniques to be discussed below have been
successfully applied in speaker adaptation field, dating back, perhaps, already to 1977 [19].

4.1 Maximum a Posteriori adaptation

Below a simple example is presented to illustrate the basic ideas of the online Bayesian
adaptation rules used to re-estimate the state observation gaussian density mean vector. It
is notable even in this case the hyperparameter estimation requires nonlinear optimization
procedures, and therefore we only state the first level of Bayesian inference Eq. (9). For
the hyperparameter optimization one can be referred to [3].

Assume the one dimensional additive noise model

oi = θ + ni, (12)

where parameter θ is to be estimated from the data set O = {oi, i = 1, 2, . . . , M}. Each
random variable ni is supposed to follow the gaussian distribution Nµ,σ(ni)

Nµ,σ(ni) =
1√

2πσ2
exp

{

−1

2

(

ni − µ

σ

)2
}

(13)

whose mean µ = 0, and variance σ = σd. Bayesian parameter estimation can be performed
by using the following steps:



1. Prior specification
p(θ|mθ, σ

2

θ) = Nmθ ,σθ
(θ). (14)

2. Likelihood

p(O|θ, σ2

o) =

M
∏

i=1

Nθ,σo
(oi) (15)

3. Posterior

p(θ|O) = Nmo,σo
(θ), (16)

µp =
σ2

o/M

σ2

θ + σ2
o/M

mθ +
σ2

θ

σ2

θ + σ2
o/M

1

M

N
∑

i=1

oi, (17)

σ2

p =
σ2

oσ
2

θ

σ2
o + Mσ2

θ

. (18)

Eq. (17) is one of the most fundamental mean estimation rules in the Bayesian speaker
adaptation [23]. It shows that when the number of data points M is small, the posterior
mean µp is approximately equal to the prior mean mθ, whereas when M is large, the
posterior mean is determined by the data. Such an approach indicates how one could
overcome the problem of a small data available during the speaker adaptation by specifying
the prior parameter values and then correcting it online by using the the newly acquired
data. Two simplest adaptation rules explained above, i.e. Eq. (17) and (18) are often
called maximum a posteriori (MAP) estimation. They have been applied in many works
on Bayesian speaker adaptation, see especially [30, 17, 32]. It has been shown that
the MAP approach outperforms the maximum likelihood gaussian mean adaptation [10,
11]. The rules Eq. (17) and (18)have been tested on word recognition task by using
the HMM-based ASR system on 1000 word DARPA Resource Management Continuous
Speech Corpus [23]. The data had twelve speakers, eleven of them were used to create a
speaker independent system and one of them was used each time as a new unseen speaker
to turn the ASR system into speaker dependent one. The best results were obtained by
using only the adaptation of gaussian state observation means, which reduces the word
error rate from 12% down to 9.5%, and as the authors state:

‘...with roughly three minutes of adaptation speech, the reduction in word error is approxi-

mately 16% which is nearly half the reduction achieved training a speaker-dependent model

with 10 times more data.’

Adaptation of variance according to Eq. (18) did not improve results. The conclusion that
a speaker adaptation is superior to speaker-dependent training is also drawn in [9, 18].
These works use NIST Naval Resource Management corpus, and put more emphasis on
the initial estimation of prior means mθ.

4.2 Extended Maximum a Posteriori methods

One difficulty with the MAP approach is that only those models can be adapted which
have their corresponding phonemes in a new speaker’s data. Such a data sparsity problem



is circumvented in the extended MAP (EMAP) approaches. Here one models the correla-
tions between the observation mean vectors of the different phoneme models, rather than
applying a set of separate different priors. One way to implement the idea of correlation
modelling is to apply tree-structured HMMs, where the phoneme HMMs are considered
as leaves of the HMMs that tie the states of different phoneme models [22, 27, 24].

The EMAP methods are often given names of vector field posterior smoothing [31] or
the phone cross-correlation prediction methods [30, 1, 26, 36, 13]. A general approach
to these ideas utilizes the random Markov Field concepts (MRF) concepts [26, 36], in
particular, one considers a matrix, whose columns are phoneme mean vectors, as a spatial
structure, where each element depends only on the elements located at its surrounding
neighborhood. By postulating a particular dependency structure, one estimates the cross-
correlations between different phoneme models from the training data set and then uses
the MRF priors during the speaker adaptation. See also [7] for the general overview of
the dependency modelling for the mean vectors of the prior state observation gaussian
distributions.

4.3 Bayesian Principal Component Analysis

Bayesian principal component analysis (BPCA) speaker adaptation [16] technique aims to
adapt the gaussian state observation means by stacking them into a supervector, and then
considers reduced representations of such a vector so that much less parameters should
be re-estimated during the adaptation. More precisely, the idea behind the approach can
be explained as follows:

• obtain a set of speaker dependent HMM models, each having the mean vector mk,i,j

representing the mean vector of the jth gaussian distribution in the ith state of the
kth speaker;

• construct a set M of the supervectors mk:

M = {mk = [mT
k,0,0, . . . , m

T
k,i,j, . . . , mk,N,J ]T},

• estimate the model for the supervector set by using the Bayesian PCA [16]:

m = Wx + µm + ε, (19)

where x is a latent variable modelled as a gaussian random vector with unit variance
and zero mean, gaussian noise ε ∝ N(0, σ2

ε I) is assumed to be independent of x.
The estimated model comprises three sets of parameters θ̂ = {W, µm, σ2

ε}.

• An ASR system is adapted to a new speaker by using an on-line estimation formulae
for the model parameters θ shown explicitly in Eq. (19).

Such an approach is a probabilistic generalization of the clustering-based speaker adapta-
tion technique known as ‘eigen-voice’ approach and similar ideas can be found in maximum
likelihood linear regression (MLLR) speaker transformation method [15]. According to



these transformation methods, one first estimates canonical eigen-voice matrix W, whose
each column is an eigenvector of the covariance matrix estimated from a training set of
speakers’ supervectors. Speaker-dependent system is then obtained as a linear combina-
tion of the eigen-voices. This can be implemented to produce a very fast adaptation as
one has to estimate only the linear weights that show the contribution of each eigen-voice
to the adapted speaker’s observation mean supervector, rather than estimating the whole
supervector itself. The main difference between the BPCA and the ‘eigen-voice’ approach
is that BPCA technique provides an on-line re-estimation formulae for the model θ based
on the prior distributions of the model parameters [16]:

θMP = arg max
θ

p(O|θ)p(θ|α, β), (20)

whereas more classical transformation-based methods exploit only the knowledge of the
likelihood term p(O|θ).

Experiments performed with the Korean digits database, whose 105 speakers were used
to obtain ‘eigen-voices’ and the other 35 speakers were used to evaluate the adaptation
algorithms. The dimensionality of supervector was equal to approximately 3840 param-
eters. The BPCA method was shown to outperform the MLLR method, cl. 90.21% vs.
88.60% average recognition results [16].

4.4 Combined MAP and transformation-based approaches

It is known that the transformation-based techniques are good in rapid adaptation situ-
ations when one has at its disposal only small amounts of new data to adapt the ASR
system. The MAP techniques usually show a considerable improvement only on the longer
adaptation runs. A combination of MAP update rules for the re-estimation of the state
observation gaussian distribution means and the transformation-based methods has been
shown to improve the Bayesian speaker adaptation [8]. In particular, tests were run on
the ‘spoke 3’ task of the phase-1 large vocabulary Wall Street Journal Corpus, which had
about 140 non-native speakers of American English. The results show that after 20 adap-
tation sentences the transformation approach is superior to the MAP technique, however,
after the 40 sentences the MAP method gives better results, i.e. 17% vs. 18% total
word error rate is achieved compared to the initial 30% error rate given by the speaker-
independent ASR system. The combination of both approaches decreases the word error
rate down to 14.9%.

A comparison between the MLLR and MAP linear regression (MAPLR) technique fully
utilizing Eq. (20) with the hyperparameter estimation shows that Bayesian approach
achieves more robust speech recognition under the small amounts of adaptation data [6].
Similar observations are drwan in other works on joint adaptation of gaussian means and
the linear transform W parameters [8, 33, 5, 34, 4, 29].



5 Conclusions

Bayesian speaker adaptation provides a variety of different ways to make an ASR systems
more robust to inter-speaker variations. The simplest online adaptation rules for the mean
vectors of an HMM state observation gaussian densities produce better results than their
classical ML counterparts in case there is a small adaptation data available. Further im-
provements are made when modelling the correlations between different phoneme models,
and henceforth building the joint all-phoneme priors, rather than independent priors of
each phoneme. Rapid speaker adaptation in the presence of sparse data is achieved by
introducing lower representations of the observation mean vectors via linear transforms.
Such transforms can be better utilized by knowing their parameter uncertainty bars and
this is the way how Bayesian PCA technique makes improvements on the more classical
transformation-based speaker adaptation methods. It is clear that the determination of
the model noise levels β and the regularization constants α by maximizing Bayesian ev-
idence allows one to achieve model complexity control, prune the tree-structured HMMs
and select simpler HMM structures. What is much less clear is the actual impact the
estimation of the hyperparameters causes on the ASR system performance in a large
vocabulary speech recognition.
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