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Introduction

• Natural languages are often modelled as context-free grammars

(CFGs)

• Regular languages are computationally less demanding than CFGs

– but still model syntactic and semantic properties better than

n-grams

• Some CFGs can be transformed into regular languages

• The rest can be approximatively transformed



Context-Free Grammars

• Terminals: alphabet of a finite set of symbols

• Nonterminals

• Rules map nonterminals to strings of terminals and nonterminals

• Start symbol is one of the nonterminals

• Language defined by the grammar is the reflexive closure of the start

symbol using the rules (a set of strings of terminals)

• Qubic time complexity for parsing

→ in most real-time applications too demanding



Regular Languages

• Language is a set of alphabet strings

• Regular grammars are those that generate regular languages

• Regular languages are those that are accepted by a finite automaton

• Linear time complexity for parsing

• Note that a mapping from a regular grammar into a corresponding

finite automaton cannot be realized by any algorithm (Ullian 1967)

• Strongly regular grammars can be mapped to finite automata



Finite Automata

• A finite state machine (FSM) consists of

– a finite set of states

– an alphabet (a finite set of symbols)

– (a finite set of) transitions from a state to a state with a

corresponding symbol

– start state

– end states

• A language defined by a FSM corresponds to all the paths through

the machine



General Grammar (GRM) Library

• Software library designed for use in spoken-dialogue systems, speech

synthesis and other speech processing applications

• Based on the FSM library (by same authors)

• Implements weighted rules and grammars

• Generality: Implementation does not depend on the grammar

→ grammar can be dynamically modified

• Efficiency: On-the-fly algorithms expand the automata for the

specific input sequence

• Three access levels: command line, C library and source code

• Handles also context-dependent rules (skipped here)



Transforming Strongly Regular Grammars into
Finite Automata

• Why?

– CFGs are computationally too demanding in real-time

applications

– FSMs can be optimized by general algorithms (ε-removal,

ε-normalization, determinization, and minimization of weighted

transducers)

• Algorithm consists of 6 consequtive steps...



Step 1: Compact transducer representation
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Step 2: Dependency graph
Step 3: Strongly connected components
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Step 4: Automaton for each component
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• Classical construction (Aho and Ullman 1973)

• Note: each component must contain either right-linear or left-linear

rules (explained after a few slides)



Step 5: Simple automaton accepting the set
of active nonterminals

Step 6: Expand automaton (on the fly)
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Result: Fully expanded automaton
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Right-Linear Rules

• A right-linear rule is of the form

nonterminal → terminals [nonterminal]

• Straightforward transformation to

state → output symbols, state (or end state)

• Entry point depends and exit points are known

a

b

YX

X −> aY

Y −> bX

Y −> c

c

• Note: Nonterminals outside of the strongly connected component

can be considered terminals



Left-Linear Rules

• A left-linear rule is of the form

nonterminal → [nonterminal] terminals

• Construct as before but read the right side of the rules backwards

and reverse the arrows

• Entry points are known and exit point depends
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• Note: Nonterminals X and Y are considered terminals here



Approximating Grammars by Strongly Regular
Grammars

• Any grammar can be transformed into a strongly regular grammar

approximatively

• Rules are repliced by right-linear rules

• The language will be a superset of the original

• Size of the resulting grammar is at most twice that of the input

grammar



Transformation

For each nonterminal A in the strongly connected component:

Introduce a new nonterminal A′ (interpreted as “after A”).

Add the rule A′
→ ε. (ε is the empty string)

Replace each rule of the form

A → α0B1α1B2α2 . . . Bmαm,

where α are terminals and “outsider” nonterminals (as before),

by the following set of rules:

A → α0B1

B
′

1
→ α1B2

B
′

2
→ α2B3

. . .

B′

m
→ αmA′



Example: Arighmetic Expressions
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Handling Weights

• In speech recognition, grammar weights are combined with acoustic

weights to rank hypotheses

• A robust grammar admits any hypothesis but with different weights

• Weights can be interpreted as probabilities ⇒ the finite automaton

becomes a hidden Markov model ⇒ weights can be learned from the

corpus

• Determining weights for the finite automaton based on the weights

of the grammar is not trivial



Conclusions

• In most real-time applications, general context-free grammars are

computationally too demanding

• Automata transformed from grammars are practical

• Some context-free languages need to be approximated with regular

languages for the transformation

• The GRM library implements all that and it is used in many projects


