
T-61.182 Robustness in Language and Speech Processing

Chapter 6: Regular Approximation of
Context-Free Grammars

Chapter 7: Weighted Grammar Tools: The
GRM Library

Mehryar Mohri (and Mark-Jan Nederhof)

presented by Tapani Raiko

Mar 27, 2003



Contents

• Introduction

• Context free grammars

• Regular languages (∼ finite automata)

• The general grammar (GRM) library

• Transforming strongly regular grammars into finite automata

• Approximating other grammars by strongly regular grammars

• Conclusions



Example

Context−free grammar Finite state machine

{. , ab, aabb, ...}Language

Start symbol S

start

ba

b

{. , a, b, aa, ab, bb, ...}Language

{S−> . , S−>aSb} 

{S}

{a,b}

Rules

Nonterminals

Terminals



Introduction

• Natural languages are often modelled as context-free grammars

(CFGs)

• Regular languages are computationally less demanding than CFGs

– but still model syntactic and semantic properties better than

n-grams

• Some CFGs can be transformed into regular languages

• The rest can be approximatively transformed



Context-Free Grammars

• Terminals: alphabet of a finite set of symbols

• Nonterminals

• Rules map nonterminals to strings of terminals and nonterminals

• Start symbol is one of the nonterminals

• Language defined by the grammar is the reflexive closure of the start

symbol using the rules (a set of strings of terminals)

• Qubic time complexity for parsing

→ in most real-time applications too demanding



Regular Languages

• Language is a set of alphabet strings

• Regular grammars are those that generate regular languages

• Regular languages are those that are accepted by a finite automaton

• Linear time complexity for parsing

• Note that a mapping from a regular grammar into a corresponding

finite automaton cannot be realized by any algorithm (Ullian 1967)

• Strongly regular grammars can be mapped to finite automata



Finite Automata

• A finite state machine (FSM) consists of

– a finite set of states

– an alphabet (a finite set of symbols)

– (a finite set of) transitions from a state to a state with a

corresponding symbol

– start state

– end states

• A language defined by a FSM corresponds to all the paths through

the machine



General Grammar (GRM) Library

• Software library designed for use in spoken-dialogue systems, speech

synthesis and other speech processing applications

• Based on the FSM library (by same authors)

• Implements weighted rules and grammars

• Generality: Implementation does not depend on the grammar

→ grammar can be dynamically modified

• Efficiency: On-the-fly algorithms expand the automata for the

specific input sequence

• Three access levels: command line, C library and source code

• Handles also context-dependent rules (skipped here)



Transforming Strongly Regular Grammars into
Finite Automata

• Why?

– CFGs are computationally too demanding in real-time

applications

– FSMs can be optimized by general algorithms (ε-removal,

ε-normalization, determinization, and minimization of weighted

transducers)

• Algorithm consists of 6 consequtive steps...



Step 1: Compact transducer representation

Ya

Z

(Z)

(X)

(T)

(Y)

X

c

b

c
X

TY −> c

T −> ZY

T −> c

Z −> TXY

X −> aY

Y −> bX



Step 2: Dependency graph
Step 3: Strongly connected components

YXZT

YXZTY −> c

Y −> bX

X −> aY

Z −> TXY

T −> c

T −> ZY



Step 4: Automaton for each component

Y −> c

ZY

X

T
Yc

Y −> bX

c

X −> aY

Z −> TXY

T −> c

T −> ZY a

b

YX

• Classical construction (Aho and Ullman 1973)

• Note: each component must contain either right-linear or left-linear

rules (explained after a few slides)



Step 5: Simple automaton accepting the set
of active nonterminals

Step 6: Expand automaton (on the fly)

X

T c

X

Y

X Y



Result: Fully expanded automaton

a c
b

a

b b a
c

c
a

a

c

a
b

c



Right-Linear Rules

• A right-linear rule is of the form

nonterminal → terminals [nonterminal]

• Straightforward transformation to

state → output symbols, state (or end state)

• Entry point depends and exit points are known

a

b

YX

X −> aY

Y −> bX

Y −> c

c

• Note: Nonterminals outside of the strongly connected component

can be considered terminals



Left-Linear Rules

• A left-linear rule is of the form

nonterminal → [nonterminal] terminals

• Construct as before but read the right side of the rules backwards

and reverse the arrows

• Entry points are known and exit point depends

c Y

ZY

X

T

T −> ZY

T −> c

Z −> TXY
• Note: Nonterminals X and Y are considered terminals here



Approximating Grammars by Strongly Regular
Grammars

• Any grammar can be transformed into a strongly regular grammar

approximatively

• Rules are repliced by right-linear rules

• The language will be a superset of the original

• Size of the resulting grammar is at most twice that of the input

grammar



Transformation

For each nonterminal A in the strongly connected component:

Introduce a new nonterminal A′ (interpreted as “after A”).

Add the rule A′
→ ε. (ε is the empty string)

Replace each rule of the form

A → α0B1α1B2α2 . . . Bmαm,

where α are terminals and “outsider” nonterminals (as before),

by the following set of rules:

A → α0B1

B
′

1
→ α1B2

B
′

2
→ α2B3

. . .

B′

m
→ αmA′



Example: Arighmetic Expressions

F’−>T’
F−>(E
E’−>)F’
F−>aF’

a

+
*

)(

T−>F

T’−>.
E’−>.

F−>a
F−>(E)

E−>E+T
E−>T
T−>T*F
T−>F

F’−>. F’−>T’
T’−>*F
T−>T

T’−>E’

E−>E
E’−>+T
T’−>E’
E−>T



Handling Weights

• In speech recognition, grammar weights are combined with acoustic

weights to rank hypotheses

• A robust grammar admits any hypothesis but with different weights

• Weights can be interpreted as probabilities ⇒ the finite automaton

becomes a hidden Markov model ⇒ weights can be learned from the

corpus

• Determining weights for the finite automaton based on the weights

of the grammar is not trivial



Conclusions

• In most real-time applications, general context-free grammars are

computationally too demanding

• Automata transformed from grammars are practical

• Some context-free languages need to be approximated with regular

languages for the transformation

• The GRM library implements all that and it is used in many projects


