T-61.182 Robustness in Language and Speech Processing

Chapter 6: Regular Approximation of
Context-Free Grammars

Chapter 7: Weighted Grammar Tools: The

GRM Library

Mehryar Mohri (and Mark-Jan Nederhof)

presented by Tapani Raiko
Mar 27, 2003




Contents

Introduction

Context free grammars

Regular languages (~ finite automata)

The general grammar (GRM) library

Transforming strongly regular grammars into finite automata
Approximating other grammars by strongly regular grammars

Conclusions




Example

Context—f{ree grammar Finite state machine
a b

Terminals {a,b}
Nonterminals {S}
Rules {S—> ., S—>aSb}
Start symbol S
start

Language {., ab, aabb, ...} Language {.,a, Db, aa, ab, bb, ...}




Introduction

Natural languages are often modelled as context-free grammars

(CFGs)

Regular languages are computationally less demanding than CFGs

— but still model syntactic and semantic properties better than

n-grams
Some CFGs can be transformed into regular languages

The rest can be approximatively transformed




Context-Free Grammars

Terminals: alphabet of a finite set of symbols

Nonterminals

Rules map nonterminals to strings of terminals and nonterminals
Start symbol is one of the nonterminals

Language defined by the grammar is the reflexive closure of the start

symbol using the rules (a set of strings of terminals)

Qubic time complexity for parsing
— In most real-time applications too demanding




Regular Languages

Language is a set of alphabet strings

Regular grammars are those that generate regular languages
Regular languages are those that are accepted by a finite automaton
Linear time complexity for parsing

Note that a mapping from a regular grammar into a corresponding
finite automaton cannot be realized by any algorithm (Ullian 1967)

Strongly regular grammars can be mapped to finite automata




Finite Automata

e A finite state machine (FSM) consists of

a finite set of states

an alphabet (a finite set of symbols)

(a finite set of) transitions from a state to a state with a
corresponding symbol

start state
end states

A language defined by a FSM corresponds to all the paths through
the machine




General Grammar (GRM) Library

Software library designed for use in spoken-dialogue systems, speech
synthesis and other speech processing applications

Based on the FSM library (by same authors)
Implements weighted rules and grammars

Generality: Implementation does not depend on the grammar
— grammar can be dynamically modified

Efficiency: On-the-fly algorithms expand the automata for the
specific input sequence

Three access levels: command line, C library and source code

Handles also context-dependent rules (skipped here)




Transforming Strongly Regular Grammars into
Finite Automata

o Why?
— CFGs are computationally too demanding in real-time

applications

— FSMs can be optimized by general algorithms (e-removal,
e-normalization, determinization, and minimization of weighted

transducers)

e Algorithm consists of 6 consequtive steps...




Step 1: Compact transducer representation

o

B




Step 2: Dependency graph
Step 3: Strongly connected components

T—>7Y 6
T-—>c awg
Z > TXY

X —>aY

Y —>bX




Step 4: Automaton for each component

T —>7Y

T-—>c @\?@—C»@

/. —>TXY

X —>aY . X \Y\
Y —>bX O~ N

Y —>c¢C

e Classical construction (Aho and Ullman 1973)

e Note: each component must contain either right-linear or left-linear
rules (explained after a few slides)




Step 5: Simple automaton accepting the set
of active nonterminals

Step 6: Expand automaton (on the fly)

0 O
: O




Result: Fully expanded automaton




Right-Linear Rules
A right-linear rule is of the form
nonterminal — terminals [nonterminall

Straightforward transformation to

state — output symbols, state (or end state)

Entry point depends and exit points are known

X —>aY

Y>bx =~ (XS0

b
Y —>c¢C

Note: Nonterminals outside of the strongly connected component
can be considered terminals




Left-Linear Rules

A left-linear rule is of the form

nonterminal — [nonterminal] terminals

Construct as before but read the right side of the rules backwards

and reverse the arrows

Entry points are known and exit point depends
T—>27Y
T —>c
/7 —>TXY

Note: Nonterminals X and Y are considered terminals here




Approximating Grammars by Strongly Regular
Grammars

Any grammar can be transformed into a strongly regular grammar

approximatively
Rules are repliced by right-linear rules
The language will be a superset of the original

Size of the resulting grammar is at most twice that of the input

grammar




Transformation

For each nonterminal A in the strongly connected component:
Introduce a new nonterminal A’ (interpreted as “after A™).
Add the rule A" — €. (€ is the empty string)

Replace each rule of the form

A — agBia1Bsas ... By,

where « are terminals and “outsider” nonterminals (as before),
by the following set of rules:

A — agB;

B| — a1 Bs

B} — a9 Bs

/ /
B — an,A




Example: Arighmetic Expressions




Handling Weights

In speech recognition, grammar weights are combined with acoustic

weights to rank hypotheses
A robust grammar admits any hypothesis but with different weights

Weights can be interpreted as probabilities = the finite automaton
becomes a hidden Markov model = weights can be learned from the

corpus

Determining weights for the finite automaton based on the weights

of the grammar is not trivial




Conclusions

In most real-time applications, general context-free grammars are

computationally too demanding
Automata transformed from grammars are practical

Some context-free languages need to be approximated with regular

languages for the transformation

The GRM library implements all that and it is used in many projects




