T-61.182 Robustness in Language and Speech Processing

Speech recognition in noisy environments: A survey

Yifan Gong

presented by Tapani Raiko Feb 20, 2003

About the Paper

- Article published in Speech Communication in 1995 (31 pages)
- A survey of 250 publications divided to 3 categories:
 - Noise resistance
 - Speech enhancement
 - Model compensation for noise
- Focus: Mismatch in training and operating environments

Introduction (1/2)

- Speech recognition in controlled situations has reached very high levels of performance
- Performance degrades in noisy situations
 - -100% to 30% accuracy in a car (90km/h)
 - 99% to 50% in a cafeteria
- Two phenomena:
 - Contaminated speech signal (typically additive, also convolutional)
 - Articulation variablity (called the Lombard effect)

Introduction (2/2)

- A system trained with a given SNR performs worse in other SNR environments.
- What to do?
 - Search for noise resistant features and robust distance measures (1. Noise resistance)
 - Reduce the mismatch:
 - $\ast\,$ Remove noise from the signal
 - (2. Speech enhancement)
 - * Transform speech models to accommodate noise
 - (3. Model compensation for noise)

3. Model Compensation for Noise

Transform speech models to accommodate noise

1. Noise Resistance: Introduction

- Parameters of a recogniser are very sensitive to disturbances
- Focus on the effect of noise to the parameters
- Use derived feature parameters or similarity measurements (that are hopefully invariant to those effects)
- Weak or no assumptions about the noise
 - Both a strength and a weakness

1. Noise Resistance: Examples (1/2)

- Normalised cepstral vectors
 - Cepstrum is the Fourier transformation of spectrum
 - White noise corruption reduces the norm of cepstral vectors
 - The angle between ceptral vectors is less affected
- Spectral weightings methods (WLR, RPS, SWL)
 - Emphasize more spectral peaks than valleys
 - De-emphasize low quefrency terms of the cepstrum
- Multi-layer perceptron as phoneme classifier
 - Generalises better than e.g. k-nearest neighbour

1. Noise Resistance: Examples (2/2)

- Computational models of the auditory system for speech
 - Computationally expensive
 - Wavelet transform followed by a compressive nonlinearity
 - Frequency dependent lateral inhibition function
- Slow variation removal
 - Many noises vary slowly compared to speech
 - CMN: Remove the mean from cepstral vectors
 - Use time derivatives of cepstra
 - RASTA, RASTA-PLP, J-RASTA, J-RASTA-PLP (J handles also convolutional noise)

2. Speech Enhancement: Introduction

- A preprocessing step
- Developed for speech quality improvement
- Criteria are usually not related to recognition accuracy
- A priori information about the speech and the noise
- Enhanced SNR does not always improve recognition performance (the case with basic Wiener or Kalman filtering)

2. Speech Enhancement: Examples (1/2)

- Parameter mapping
 - Data: speech with and without noise
 - Teach a neural network to map noisy vectors to clean vectors
 - Highly dependent on training data
- Spectral subtraction
 - Estimate noise spectrum during non-speech periods
 - Subtract noise from the power spectrum
 - A special case of a Wiener filter
 - Noise masking is related (=ignore everything under a power threshold)

2. Speech Enhancement: Examples (2/2)

- Comb filtering
 - Estimate the period of the speech
 - Use only the corresponding frequency and its multiples
- Bayesian estimation
 - A generative model for latent true speech with noise
 - Estimate the posterior of the speech as the enhanced signal
 - Equivalent to template-based estimation (formulated without probabilities)

3. Model Compensation for Noise: Introduction

- Accept the precence of noise
- Hidden Markov Models (HMMs) as the framework
- Model parameteres are optimised during operation
- At very low SNRs problematic (at least in 1994)

3. Model Compensation for Noise: Examples (1/2)

- Decomposition of HMMs (PMC, STM)
 - $N\times M$ state HMM, N states for speech and M states for noise
 - Parts are trained separately
 - Assumes Gaussian distributions when actually at low SNR some are bimodal
- State-dependent Wiener filtering
 - Wiener filter uses the ratio of power spectrum of clean speech over the noisy speech
 - Power spectrum of speech is very non-stationary
 - Idea: HMMs automatically divide speech into quasi-stationary segments!

3. Model Compensation for Noise: Examples (2/2)

- Duration models
 - Duration structures of speech are less affected by noise
- Adaptation of HMMs
 - Train an HMM with lots of clean speech data
 - Use just a small amount of noisy speech to find a mapping of HMM parameters to the noisy environment
- Discriminative HMMs
 - Instead of maximum likelihood use maximum classification accuracy

Training Data Contamination

- Does not fit any of the three categories
- E.g. mix cafeteria recording to clean speech data
- Used as a benchmark
- Sensitive to noise level and type
- Cannot cope with the Lombard effect
- At equivalent SNRs, Gaussian noise is worst \rightarrow a lower bound

Conclusion (1/2)

- Focus: Mismatch between training and operating conditions
- Are properties of the noise known?
 Is computing power cheap?
 - No: Use 1. (feature-similarity-based)
 - Yes: Use 2. or 3. (transformation-based)
- Different techniques may be combined
- Non-stationary noise is a hot topic (1994)

Conclusion (2/2): Key Issues

- Accurate speech and noise models (state decomposition)
- Incorporating a dynamical model (HMM)
- Incorporating frequency correlations (LPC, SOM,...)
- Weighting portions of speech based on their SNR
- Class dependent processing (class ∈ {word, phoneme, sound class, HMM state, VQ codebook vector})
- Optimisation criteria (discriminative training)
- Human auditory system as inspiration