About the Paper

- Article published in Speech Communication in 1995 (31 pages)
- A survey of 250 publications divided to 3 categories:
 - Noise resistance
 - Speech enhancement
 - Model compensation for noise
- Focus: Mismatch in training and operating environments
Introduction (1/2)

• Speech recognition in controlled situations has reached very high levels of performance

• Performance degrades in noisy situations
 – 100% to 30% accuracy in a car (90km/h)
 – 99% to 50% in a cafeteria

• Two phenomena:
 – Contaminated speech signal (typically additive, also convolutional)
 – Articulation variability (called the Lombard effect)
Introduction (2/2)

- A system trained with a given SNR performs worse in other SNR environments.

- What to do?
 - Search for noise resistant features and robust distance measures
 (1. Noise resistance)
 - Reduce the mismatch:
 * Remove noise from the signal
 (2. Speech enhancement)
 * Transform speech models to accommodate noise
 (3. Model compensation for noise)
1. Noise Resistance

Search for noise resistant features and robust distance measures
2. Speech Enhancement

Training cond. Operating cond. \[D' \]

Data Data SNR

\text{Transform data}

Model Recognition

Remove noise from the signal
3. Model Compensation for Noise

Transform speech models to accommodate noise
1. Noise Resistance: Introduction

• Parameters of a recogniser are very sensitive to disturbances
• Focus on the effect of noise to the parameters
• Use derived feature parameters or similarity measurements (that are hopefully invariant to those effects)
• Weak or no assumptions about the noise
 – Both a strength and a weakness
1. Noise Resistance: Examples (1/2)

- Normalised cepstral vectors
 - Cepstrum is the Fourier transformation of spectrum
 - White noise corruption reduces the norm of cepstral vectors
 - The angle between cepstral vectors is less affected

- Spectral weightings methods (WLR, RPS, SWL)
 - Emphasize more spectral peaks than valleys
 - De-emphasize low quefrency terms of the cepstrum

- Multi-layer perceptron as phoneme classifier
 - Generalises better than e.g. k-nearest neighbour
1. Noise Resistance: Examples (2/2)

- Computational models of the auditory system for speech
 - Computationally expensive
 - Wavelet transform followed by a compressive nonlinearity
 - Frequency dependent lateral inhibition function

- Slow variation removal
 - Many noises vary slowly compared to speech
 - CMN: Remove the mean from cepstral vectors
 - Use time derivatives of cepstra
 - RASTA, RASTA-PLP, J-RASTA, J-RASTA-PLP
 (J handles also convolutional noise)
2. Speech Enhancement: Introduction

- A preprocessing step
- Developed for speech quality improvement
- Criteria are usually not related to recognition accuracy
- A priori information about the speech and the noise
- Enhanced SNR does not always improve recognition performance (the case with basic Wiener or Kalman filtering)
2. Speech Enhancement: Examples (1/2)

- Parameter mapping
 - Data: speech with and without noise
 - Teach a neural network to map noisy vectors to clean vectors
 - Highly dependent on training data

- Spectral subtraction
 - Estimate noise spectrum during non-speech periods
 - Subtract noise from the power spectrum
 - A special case of a Wiener filter
 - Noise masking is related (=ignore everything under a power threshold)
2. Speech Enhancement: Examples (2/2)

- Comb filtering
 - Estimate the period of the speech
 - Use only the corresponding frequency and its multiples

- Bayesian estimation
 - A generative model for latent true speech with noise
 - Estimate the posterior of the speech as the enhanced signal
 - Equivalent to template-based estimation (formulated without probabilities)

- Accept the presence of noise
- Hidden Markov Models (HMMs) as the framework
- Model parameters are optimised during operation
- At very low SNRs problematic (at least in 1994)
3. Model Compensation for Noise: Examples (1/2)

- Decomposition of HMMs (PMC, STM)
 - $N \times M$ state HMM, N states for speech and M states for noise
 - Parts are trained separately
 - Assumes Gaussian distributions when actually at low SNR some are bimodal

- State-dependent Wiener filtering
 - Wiener filter uses the ratio of power spectrum of clean speech over the noisy speech
 - Power spectrum of speech is very non-stationary
 - Idea: HMMs automatically divide speech into quasi-stationary segments!
3. Model Compensation for Noise: Examples (2/2)

- Duration models
 - Duration structures of speech are less affected by noise

- Adaptation of HMMs
 - Train an HMM with lots of clean speech data
 - Use just a small amount of noisy speech to find a mapping of HMM parameters to the noisy environment

- Discriminative HMMs
 - Instead of maximum likelihood use maximum classification accuracy
Training Data Contamination

- Does not fit any of the three categories
- E.g. mix cafeteria recording to clean speech data
- Used as a benchmark
- Sensitive to noise level and type
- Cannot cope with the Lombard effect
- At equivalent SNRs, Gaussian noise is worst → a lower bound
Conclusion (1/2)

- Focus: Mismatch between training and operating conditions
- Are properties of the noise known?
 - Is computing power cheap?
 - No: Use 1. (feature-similarity-based)
 - Yes: Use 2. or 3. (transformation-based)
- Different techniques may be combined
- Non-stationary noise is a hot topic (1994)
Conclusion (2/2): Key Issues

- Accurate speech and noise models (state decomposition)
- Incorporating a dynamical model (HMM)
- Incorporating frequency correlations (LPC, SOM, ...)
- Weighting portions of speech based on their SNR
- Class dependent processing (class $\in \{\text{word, phoneme, sound class, HMM state, VQ codebook vector}\}$)
- Optimisation criteria (discriminative training)
- Human auditory system as inspiration