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About the Paper

• Article published in Speech Communication in 1995 (31 pages)

• A survey of 250 publications divided to 3 categories:

– Noise resistance

– Speech enhancement

– Model compensation for noise

• Focus: Mismatch in training and operating environments



Introduction (1/2)

• Speech recognition in controlled situations has reached very high

levels of performance

• Performance degrades in noisy situations

– 100% to 30% accuracy in a car (90km/h)

– 99% to 50% in a cafeteria

• Two phenomena:

– Contaminated speech signal (typically additive, also

convolutional)

– Articulation variablity (called the Lombard effect)



Introduction (2/2)

• A system trained with a given SNR performs worse in other SNR

environments.

• What to do?

– Search for noise resistant features and robust distance measures

(1. Noise resistance)

– Reduce the mismatch:

∗ Remove noise from the signal

(2. Speech enhancement)

∗ Transform speech models to accommodate noise

(3. Model compensation for noise)
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2. Speech Enhancement
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3. Model Compensation for Noise
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1. Noise Resistance: Introduction

• Parameters of a recogniser are very sensitive to disturbances

• Focus on the effect of noise to the parameters

• Use derived feature parameters or similarity measurements

(that are hopefully invariant to those effects)

• Weak or no assumptions about the noise

– Both a strength and a weakness



1. Noise Resistance: Examples (1/2)

• Normalised cepstral vectors

– Cepstrum is the Fourier transformation of spectrum

– White noise corruption reduces the norm of cepstral vectors

– The angle between ceptral vectors is less affected

• Spectral weightings methods (WLR, RPS, SWL)

– Emphasize more spectral peaks than valleys

– De-emphasize low quefrency terms of the cepstrum

• Multi-layer perceptron as phoneme classifier

– Generalises better than e.g. k-nearest neighbour



1. Noise Resistance: Examples (2/2)

• Computational models of the auditory system for speech

– Computationally expensive

– Wavelet transform followed by a compressive nonlinearity

– Frequency dependent lateral inhibition function

• Slow variation removal

– Many noises vary slowly compared to speech

– CMN: Remove the mean from cepstral vectors

– Use time derivatives of cepstra

– RASTA, RASTA-PLP, J-RASTA, J-RASTA-PLP

(J handles also convolutional noise)



2. Speech Enhancement: Introduction

• A preprocessing step

• Developed for speech quality improvement

• Criteria are usually not related to recognition accuracy

• A priori information about the speech and the noise

• Enhanced SNR does not always improve recognition performance

(the case with basic Wiener or Kalman filtering)



2. Speech Enhancement: Examples (1/2)

• Parameter mapping

– Data: speech with and without noise

– Teach a neural network to map noisy vectors to clean vectors

– Highly dependent on training data

• Spectral subtraction

– Estimate noise spectrum during non-speech periods

– Subtract noise from the power spectrum

– A special case of a Wiener filter

– Noise masking is related (=ignore everything under a power

threshold)



2. Speech Enhancement: Examples (2/2)

• Comb filtering

– Estimate the period of the speech

– Use only the corresponding frequency and its multiples

• Bayesian estimation

– A generative model for latent true speech with noise

– Estimate the posterior of the speech as the enhanced signal

– Equivalent to template-based estimation (formulated without

probabilities)



3. Model Compensation for Noise:
Introduction

• Accept the precence of noise

• Hidden Markov Models (HMMs) as the framework

• Model parameteres are optimised during operation

• At very low SNRs problematic (at least in 1994)



3. Model Compensation for Noise:
Examples (1/2)

• Decomposition of HMMs (PMC, STM)

– N × M state HMM, N states for speech and M states for noise

– Parts are trained separately

– Assumes Gaussian distributions when actually at low SNR some

are bimodal

• State-dependent Wiener filtering

– Wiener filter uses the ratio of power spectrum of clean speech

over the noisy speech

– Power spectrum of speech is very non-stationary

– Idea: HMMs automatically divide speech into quasi-stationary

segments!



3. Model Compensation for Noise:
Examples (2/2)

• Duration models

– Duration structures of speech are less affected by noise

• Adaptation of HMMs

– Train an HMM with lots of clean speech data

– Use just a small amount of noisy speech to find a mapping of

HMM parameters to the noisy environment

• Discriminative HMMs

– Instead of maximum likelihood use maximum classification

accuracy



Training Data Contamination

• Does not fit any of the three categories

• E.g. mix cafeteria recording to clean speech data

• Used as a benchmark

• Sensitive to noise level and type

• Cannot cope with the Lombard effect

• At equivalent SNRs, Gaussian noise is worst → a lower bound



Conclusion (1/2)

• Focus: Mismatch between training and operating conditions

• Are properties of the noise known?

Is computing power cheap?

– No: Use 1. (feature-similarity-based)

– Yes: Use 2. or 3. (transformation-based)

• Different techniques may be combined

• Non-stationary noise is a hot topic (1994)



Conclusion (2/2): Key Issues

• Accurate speech and noise models (state decomposition)

• Incorporating a dynamical model (HMM)

• Incorporating frequency correlations (LPC, SOM,. . . )

• Weighting portions of speech based on their SNR

• Class dependent processing (class ∈ {word, phoneme, sound class,

HMM state, VQ codebook vector})

• Optimisation criteria (discriminative training)

• Human auditory system as inspiration


