Book Chapter 8

Johan de Veth, Bert Cranen, Louis Boves: Acoustic Features and Distance Measure to Reduce Vulnerability of ASR Performance Due to the Presence of a Communication Channel and/or Background Noise

Noise model

• They consider additive background noise and channel transfer function:

• Reliable simple model is better than unreliable complex model.

Robustness

- Not to restore the original clean speech but the **spectrum** of the clean speech.
- Actually clean speech does not exist. However, all effects similar for all utterances can be considered as part of the clean speech.
- Robustness comes into play when the effects on the speech are **variable**.
- The chapter concentrates on two things:
 - 1. Robustness against the channel
 - 2. Robustness against the background noise

Robustness against the channel – 1

- Assumptions:
 - A time-invariant channel: $H_1(t, \omega) = H_1(\omega)$.
 - Noise and the spontaneous activity of the channel can be neglected.
- $S'(t,\omega) = H_1(\omega)S(t,\omega)$
- In cepstral domain, this leads to: $c'(t,\tau) = c_h(\tau) + c(t,\tau)$.
- If training and testing is done using two different channels, we can use channel normalization methods.

Robustness against the channel – 2

- It is good to separate the following situations:
 - Conditions different for training and testing, but **constant**.
 - Conditions differ between all recording sessions.
- The paper compares three normalization methods with context-dependent and context-independent HMMs:
 - Cepstrum mean subtraction
 - RASTA filtering
 - Phase-corrected RASTA

Robustness against the channel – 3

- Cepstrum mean subtraction worked best.
- The phase-responses of the filters should be linear.
- All phase distortions interfere time-invariance and independence assumptions.
- In general, robustness methods must be compatible with the speech models.

Robustness against background noise

• The model:

$$S'(t,\omega) = H_0(t,\omega) + H_1(\omega) \left[S(t,\omega) + N(t,\omega) \right]$$
$$= H_1(\omega)S(t,\omega) + U(t,\omega)$$

- Three approaches:
 - 1. Clean the features.
 - 2. Adapt the models.
 - 3. Adapt the distance computation in the search.

Cleaning the features

- If the noise is quasi time-invariant, it is possible to use spectral subtraction:
 - Estimate the noise spectrum $U(\omega)$.
 - Subtract it from the noisy input $S'(t, \omega)$.
- Needs a reliable way to estimate background noise.
- Can be combined with other methods.

Adapting the models

- Noise known:
 - Simplest to train the models in that environment.
 - Or the noise can be added artificially.
- Noise not known, but is time-invariant:
 - We can use Parallel Model Combination (PMC)
 - Separate models for different types of noise.
 - During the recognition the best combination of speech and noise is computed.
- Noise is also time-variant:
 - Much less observations for estimating $U(t, \omega)$.
 - Thus $U(t, \omega)$ has to be simpler.

Adapting the distance computation

- Noise adds uncertainty to some feature values.
- Traditional idea:
 - Detect time-frequency regions which are dominated by $U(t, \omega)$.
 - Recognition should be based on the feature values least affected by the noise.
 - How to detect noisy values?
- Another approach: Alter the distance function so that unlikely feature values have a smaller effect.

Robust local distance function

• Usually the emission probability is:

$$d_{\rm loc}(S_i, x(t)) = -\log\left[\sum_{m=1}^{M} w_{im} \prod_{k=1}^{K} G_{imk}(x_k(t))\right]$$

• Robust local distance is:

$$d_{\text{robust}}(S_i, x(t)) = -\log\left[\sum_{m=1}^M w_{im} \prod_{k=1}^K \left[(1-\epsilon) G_{imk}(x_k(t)) + \epsilon p_0(x_k(t)) \right] \right]$$

• $p_0(x)$ can be uniform distribution.

Experiments

- Connected digits recognition.
- Robust distance was compared to conventional distance.
- Results improved 0–20 %-units depending on the signal-to-noise ratios.
- Different feature transformations were also tested.
- Results were better if noise was not smeared.

Conclusions

- Channel and background noise based on a mathematical model.
- Reliable estimates are important even if it requires a simple model.
- Speech recognition modules must not violate each other's assumption.
- Noise often affects only some of the feature values → robust local distance function.
- Feature value transformations may smear the noise.