T-61.182 Robustness in Language and Speech Processing

* Astrid Hagen and Andrew C. Morris *

Recent Advances in the Multi-Stream HMM/ANN Hybrid Approach to Noise Robust ASR, December 2002

explained by

* Ramūnas Girdziušas *

February 13th, 2003
• Introduction ... 3
• Multi-expert systems in ASR 4
• Multi-band hybrid systems 6
• Tandem HMM/ANN systems 9
• All-combinations Multi-stream hybrid 12
• Hypothesis level combination hybrids 14
• Comparative system performance 17
• Conclusions ... 18
• New directions 19
• Standard HMM/GMM-based ASR systems perform well on clean speech.

• How to achieve noise robust ASR?

• Different features, context dependent speech units, various HMM extensions, phone and language models,...

• This paper:
 – an investigation of several hybrid ANN/HMM systems that use ANNs as multiple experts at various levels of a standard HMM-based ASR system;
 – mild focus on decision combination rules;
 – more on assessment of performance of several chosen ASR systems in the presence of non speech-like noise.
Kuva 1: Multi-expert combination levels in HMM/ANN ASR systems. Top - feature level, middle - posterior probabilities level, bottom - hypothesis level.
2 – Multi-expert systems in ASR

2.2 – Combination rules

Example of combination rules at posterior probabilities expert combination level:

- q_k - speech state, $k = 1 \ldots, K$.
- x - speech data for some given time frame.
- x_i - ith filter output.

Product rule

$$P(q_k|x) \propto \prod_{i=1}^{B} P(q_k|x_i), \quad (1)$$

Sum rule

$$P(q_k|x) \propto \sum_{i=1}^{B} w_i P(q_k|x_i), \quad (2)$$
3.2 – All-combinations Multi-band Hybrid

Kuva 3: Expert is trained for every possible combination of sub-bands. Combination is at both the feature and posteriors level.
3 – Multi-band hybrid systems

3.3 – Standard MB vs. All-combinations MB

Kuva 4: Standard Multi-band (STD) vs. All-combinations Multi-band (AC) on PLP features (a) and J-RASTA-PLP features (b). Numbers connected digits data.
4 – Tandem HMM/ANN systems

4.1 – Multi-stream Tandem HMM/ANN hybrid

Kuva 5: Each ANN expert post-processes a separate stream of features.
4 – Tandem HMM/ANN systems

4.2 – Narrow-band Tandem HMM/ANN hybrid

Kuva 6: Each narrow-band ANN expert is trained by adding white noise to its input. 127 HMM states, 1000 units in its hidden layer, 3 frames of context.
4.3 – Do ‘tandem’ systems improve the ASR?

Kuva 7: Test results. Standard Tandem and Multi-stream tandem vs. baseline system (a) and Narrow-band Tandem vs. baseline system (b). Aurora 2.0 connected digits data.
Kuva 8: Each expert acts as an independent speech state classifier with its own features and different model type.
5.2 – Test results

Kuva 9: Test results for the All-combinations Multi-stream hybrid, employing PLP (P), RASTA-PLP (R) and MSG (M) features. Results are presented for single streams and feature concatenation (a) and for posteriors combination (b). Portuguese SPEECHDAT.
Kuva 10: All-combinations Multi-stream hybrid with hypothesis level combination. Each expert is trained on every possible combination of feature streams.
Kuva 11: HMM-based ACMS MAP hypothesis level combination vs. baseline single-stream system and the ‘soft missing data’ (SMD) technique. Aurora 2.0 TIDIGITS connected digits corpus.
Kuva 12: 3-ANN-based ACMS MAP hypothesis level hybrid, employing context-independent monophone models (I), context-dependent triphone models (D) and word models (W) vs. hypothesis level MS systems. PLP features (a) and RASTA-PLP features (b). SPEECH-DAT corpus.
7 – Comparative system performance

<table>
<thead>
<tr>
<th></th>
<th>SNBand</th>
<th>DNBnd</th>
<th>WBand</th>
<th>Clean</th>
<th>RFtrs</th>
<th>NoMat</th>
</tr>
</thead>
<tbody>
<tr>
<td>MB</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>ACMB</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>MST</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>NBT</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>ACMS</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Kuva 13: SNBand=static narrow-band noise; DNBnd=dynamic narrow-band noise; WBand=wide-band noise; Clean=no noise; RFtrs=advantage persists with noise robust features; NoMat=advantage persists with non-matched noise types.
8 – Conclusions

- **Standard Multi-band**: simple, yet problems with the product rule, degrades ASR performance on clean speech!

- **All-combinations Multi-band**: pairwise sub-band dependence increases ASR performance in case of wide-band noise and clean speech.

- **Multi-stream Tandem**: processes different representations of full-band signal, useful in data fusion.

- **Narrow-band Tandem**: somehow disassembles noise, though immunity is only from the non speech-like noises.

- **All-combinations Multi-stream**: improves ASR performance on matched and non-matched noises, even without expert weighting. Unlike All-combinations Multi-band hybrids, improves ASR performance on clean speech.
9 – New directions

- New features.
- Multi-condition training.
- New classifier architectures.
- New combination rules and weighting schemes.
- Asynchronous decoding.
- One-stage multi-expert training.
- HMM/GMM based recognition with missing-data.