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Finding optimal basis function to denoise

1. Karhunen-Loeve Expansion

2. Interprtaion as Linear , Time-Variant Filtering

3. Damped Sinusoids : Finding Optimal function

Adaptive Analysis Using Basis Functions

1. Instantaneous LMS algorithm

2. Block LMS algorithm



Karhunen-Loeve Expansion – optimal basis function

To design the basis function such that the signal part is efficiently
represented witha small number of functions

Derivation:

Decompostion of signal x in to two sums representing signal and noise

Aim is to find set of        such that resembles original signal as closely as 
possible. 

Can be done by minimising the noise power estimate:  



PROOF

considering that the actual signal is composed of                          the 
noise power estimate becomes. 

=          =   as noise is zero-mean with correlation
matrix

as signal noise are assumed to 
be uncorrelated.



Since noise power is not dependent on        . The minimisation of       is 
equivalent to making resemble S



Optimal basis function and correlation matrix of data

We start frim the equation of noise power estimate again:

=

since =                 = =

Minimisation by the use of Lagrange multiplier to ensure that orthonoramilty
of        is mentained. we get the function to be minimised as :

lagrange multipliers



MSE  as Sum of Eigen values

The minimization of the above function with lagrange multipliers can
eb done by taking gradient with respect to       and setting it to zero, 
which gives: 

or

so mean square error can be represented in terms of  lagrange coefficients or
eigen values

So is minmised when N- K 
smallest eigenvalues are chosen

or

When signal is represented in 
terms of basis vector
corresponding to largest K eiegen
vales



Interpretations

It can be viewed as finding
direction of maximum variance in 
n dimensional space

Interpretation as Linear, Time Variant Filtering

when signal is estimated as means of different basis function i.e.

where



Interpretation in frequency domain

orthonormal basis

functions

Instantaneous
frequency responses



Modeling with Damped Sinusoids

Sinusoidal basis function with exponential damping can be used to make a 
variety of basis functions, such as data x can be represented as :

frequency
amplitude

phase

Damping factor

Since x(n) is generally real valued signal, so data can be represented by 
damped cosines because sum of conjugate complex pairs is cosine.



Pros and cons of damped sinusoid as basis function

.Damping add an extra degree of 
freedom , so fewer basis function 
represent the data

No orthonormality

Non linearity of equations makes 
it tough to find the solutions for 
best basis function



Prony Method

The model

Can be represented as where

This model can be viewed as homogenous soultion to a linear difference equation 

with fixed parameters. i.e. 

x(n) + a1x(n-1) +. . . + akx(n-k) = 0

In prony’s original method it assumed that number of available samples is equal 

to unknown parameters, so the difference equation is valid for n = k, . . . 2k-1



The difference equation can be represented as k x k matrix  equation as:

On solving the above equation we get values of a1 . . .ak which can be used 
to find the roots of the polynomial 

The roots can be used to determine the parameters  h1, . . . hk from the eq.



Prony method for real problems: least square Prony method

When we want to use less parameters k than available number of observations 
N we have relax the requirement of difference equation as given below

x(n) + a1x(n-1) +. . . + akx(n-k) = e(n) error

And to minimise the error e(n) w.r.t the parameters a1, . . .ak

The parameters h1 . . .hk is determined by minimizing the function: 

And the least square solution comes out to be



Adaptive analysis using Basis Functions

Instanteneous LMS Algorithm

The observed signal is made from concatenation of successive Evoked
potentials

The siganl estimate is calcukated from truncated series expansion but
this time with time varying weight vector w(n). For this purpose minimsation of 
MSE is done at every sample. For this the differenital of the function

is taken to yeild : -



using the gradient to update weights and using mean µ instead of expectation
the update formula is :

which when expressed in terms of initial weight vector w(0) can be
written as 

where



A representation of adaptive analysis using LMS algorithm



The Block LMS algorithm

Its a extension of singla trial LMS method using truncated series expansion.

the error function is quiet simmilar

but wi-1 is used instead of wi

so the updateing of weights is done by

wi = (1-µ)wi-1 + µF T
s xi    or wi = wi-1 + µF T

s ( xi – F swi-1 )


