
Helsinki University of Technology
Espoo, Finland.

Tik-61.181 Bioinformatics
Fall 2000

PROJECT REPORT

Raúl Lozano, Julián Cobos Tik-61.181 Bioinformatics

29.1.2001 2

Raúl Lozano Mendoza, 55811K
Julián Cobos Aparicio, 55810J

Raúl Lozano, Julián Cobos Tik-61.181 Bioinformatics

29.1.2001 3

Table of contents

ABSTRACT ... 4

INTRODUCTION... 4

DESCRIPTION OF THE METHODS.. 5
1. Model definition .. 5
2. Training algorithms... 6
3. Analyzing method .. 8
4. Data description.. 8

DESCRIPTION OF THE RESULTS.. 10
Test 1:.. 11
Test 2:.. 11
Test 3:.. 12
Test 4:.. 13

CONCLUSIONS.. 15

REFERENCES.. 16

Raúl Lozano, Julián Cobos Tik-61.181 Bioinformatics

29.1.2001 4

Abstract

Our project work consists on building a Hidden Markov Model (HMM), to recognize
CpG islands inside DNA sequences. For this purpose we have implemented the HMM
with all its variables, the “Baum-Welch”, “Forward” and “Backward” algorithms for
training the model, and the “Viterbi” algorithm for finding the CpG structures into the
sequences. Later, we have tested the model using own examples and real data and
compared the results with the output of an available application found in Internet.

Introduction

In the human genome wherever the dinucleotide CG occurs (frequently written CpG
to distinguish it from the C-G base pair across the two strands) the C nucleotide
(cytocine) is typically chemically modified by methylation. There is a relatively high
chance of this methyl-C mutating into a T, with the consequence that in general CpG
dinucleotides are rarer in the genome than could be expected from the independent
probabilities of the C and G. For biologically important reasons the methylation
process is suppressed in short stretches of the genome, such as around the promoters
or “start” regions of many genes. In these regions we see many more CpG
dinucleotides than elsewhere, and in fact more C and G nucleotides in general. Such
regions are called CpG islands. They are typically a few hundred to a few thousand
bases long.

Our problem now is, given a long piece of a DNA sequence, how a CpG island could
be found in it, if there are any. For this purpose we have chosen to use a Hidden
Markov Model (HMM) with the Viterbi algorithm.

A HMM can be seen like a finite state machine in which the following state only
depends on the present state (present but not passed memory), and we have a
observations or parameters vector associated to each transition between states. It is
possible thus to be said that a model of Markov have two processes associated: one
hidden, no directly observable, corresponding to the transitions between states, and
another observable one (and directly related to first), whose accomplishments are the
vectors of parameters that take place from each state and which they form the pattern
to recognize.

To apply the HMM method to our problem we must define a suitable model for
representing our system, and later on, to train it for recognizing the CpG islands with
a set of example sequences known to contain CpG islands inside.

Raúl Lozano, Julián Cobos Tik-61.181 Bioinformatics

29.1.2001 5

Description of the methods

The project work could be divided into three different phases:

1. Model definition
2. Training algorithms
3. Analyzing method
4. Data description
5. Application description

1. Model definition

In a DNA sequence we can set a difference between fragments which are CpG island
and fragments which are not. Therefore we have built a HMM model consisting in
two states, representing to be or not to be in a CpG island, in the current point of the
sequence.

When we are in a CpG island the probability of seeing C’s or G’s is bigger than in a
normal sequence. And the probability to stay in the same state when this is not CpG is
bigger than the probability to transit to the other state.

Fig 1. HMM for CpG island recognition.

For correctly defining the HMM we need to establish the following parameters:

1. Number of states in the model (N). Although the states are hidden, for many
practical applications there is often some physical significance attached to the
states or to sets of states of the model. For our problem we need to represent
two states, State 1 for non CpG and State 2 for CpG.

2. The number of distinct observation symbols per state (M). It is the discrete

alphabet size. The observation symbols corresponds to the physical output of
the system being modeled. For the CpG islands recognition, the observation
symbols are simply the four DNA nucleotides (A, C, G, T).

A: 0.3
C: 0.2
G: 0.2
T: 0.3

A: 0.2
C: 0.3
G: 0.3
T: 0.2

0.6

0.5

0.6 0.6

 State 1:
No CpG

State 2:
CpG

Raúl Lozano, Julián Cobos Tik-61.181 Bioinformatics

29.1.2001 6

3. The state transition probability distribution (transitions matrix, A). Each

element aij represents the probability of transit from the state i to the state j. In
our example the initial values for the matrix A are the following:

21

5,05,0
4,06,0

2
1

statestate

state

state
A ��

�

�
��
�

�
=

4. The observation symbol probability distribution (emissions matrix, E). Each

element eij represents the probability of seeing the symbol j being at the state i.
In our example the initial values for the matrix E are the following:

TGCA

state

state
E ��

�

�
��
�

�
=

2,03,03,02,0
3,02,02,03,0

2
1

5. The initial state distribution (vector π). Its elements πi represents the

probability of begin in the state i. In our design we have supposed that we
always begin in a non CpG island, therefore our vector π is:

)0,1(=π

2. Training algorithms

We will use these parameters as the initial values for the training process. The
algorithm used for that purpose was the Baum-Welch algorithm, which requires the
implementation of the Forward and Backward algorithms also. Now, we will describe
very roughly these algorithms:

1. Baum-Welch algorithm:

This algorithm has a natural probabilistic interpretation; informally, it first estimates
the Akl and Ekb by considering probable paths for the training sequences using the
current values of akl and ekb. Then the followings equations are used to derive new
values of the a’s and e’s:

��
==

' '' ' b kb

kb
kb

l kl

kl
kl E

E
e

A

A
a

This process is iterated until some stopping criterion is reached.

Raúl Lozano, Julián Cobos Tik-61.181 Bioinformatics

29.1.2001 7

More formally, the Baum-Welch algorithm calculates Akl and Ekb as the expected
number of times each transition of emission is used, given the training sequences. To
do this it uses the same forward and backward values as the posterior probability
decoding method. The probability that akl is used at position i in sequence x is:

)(
)1()(

),|,(1
1 xP

ibeaif
xlkP llxklk

ii
i

+
=== +

+ θππ

From this we can derive the expected number of times that akl is used by summing
over all positions and over all training sequences,

� � +=
+

j i

j
llxkl

j
kjkl ibeaif

xP
A j

i
)1()(

)(
1

1

where fk

j(i) is the forward variable calculated for the sequence j, and bl
j(i) is the

corresponding backward variable. Similarly, we can find the expected number of
times that letter b appears in state k,

� �
=

=
j bxi

j
k

j
kjkb

j
i

ibif
xP

E
}|{

)()(
)(

1

where the inner sum is only over those positions i for which the symbol emitted is b.

Having calculated these expectations, the new model parameters are calculated just as
before. We can iterate using the new values of the parameters to obtain new values of
the As and Es as before, but in this case we are converging in a continuous-valued
space, and so will never in fact reach the maximum. It is therefore necessary to set a
convergence criterion, typically stopping when the likelihood change can be used for
the iteration.

2. The forward algorithm

The forward algorithm is used to calculate the probability of the observed sequence to
be produced by the model. The forward variable fk(i) is the probability of the observed
sequence up to an including xi, requiring that πi = k.

),()(1 kxxPif iik == π�
The recursion equation is:

�+
=+

k
klklxl aifeif

i
)()1(

1

3. The backward algorithm

The backward algorithm calculates the same probability as the forward algorithm, but
instead obtained by a backward recursion starting at the end of the sequence. The
recursion equation is:

Raúl Lozano, Julián Cobos Tik-61.181 Bioinformatics

29.1.2001 8

� +=
+

l
llxklk ibeaib

i
)1()(

1

3. Analyzing method

For recognition stage, we will use the Viterbi algorithm. This algorithm, is used to
find the optimal states sequence associated to a given observations sequence. For our
problem, it means that, given a DNA sequence, it is able to distinguish which part is
part of a CpG island and which is not. The Viterbi algorithm is:

• Initialization (i = 0):

 v1(0) = 1, v2(0) = 0

• Recursion (i = 1..L):

))1((maxarg)(

))1((max)(

klkki

klkklxl

aivlptr

aiveiv
i

−=

−=

• Termination:

))((maxarg

))((max),(

0
*

0
*

kkkL

kkk

aLv

aLvxP

=

=

π
π

• Trace back (i = L..1):

)(*
1

*
iii ptr ππ =−

To use this algorithm in a computer with long sequences of data it is necessary to take
logarithms of the probability values to avoid the risk of the underflow error due to the
repetitive probability multiplications. Then the main equation of the algorithm
becames the following:

))log()1((maxarg)(

))log()1((max)log()(

klkki

klkklxl

aivlptr

aiveiv
i

+−=

+−+=

4. Data description

We have two types of data for our program, the training data and the testing
sequences.

First, we have trained the model with a set of sequences that were built on the
following way: we have found a set of examples of human DNA sequences known to
be CpG islands in the web pages of “The sanger center”
(http://www.sanger.ac.uk/HGP/cgi.shtml), but that we really need for the training set
are sequences containing parts of CpG island and normal parts. We were looking for
this kind of sequences in the web, but we did not find them, so we decided to create
them by adding random sequences to the sides of the CpG sequences. For this purpose
we have created a program which generates random sequences with a little more
probability of having A’s and T’s nucleotides than C’s or G’s, for simulating actual

Raúl Lozano, Julián Cobos Tik-61.181 Bioinformatics

29.1.2001 9

human DNA sequences (with no CpG islands). Although they are not real data, they
are enough to check the correction of the outputs of our application.

We have used four testing sequences; three of them were built using the same method
explained above. The last sequence was a completely random sequence with no CpG
islands at all, it was used to contrast the results with the previous examples.

Raúl Lozano, Julián Cobos Tik-61.181 Bioinformatics

29.1.2001 10

Description of the results

Our application, called “cpg”, is able to given a training set of examples and a
sequence of DNA return a 0’s and 1’s string corresponding to the state of the model in
each point of the sequence, 0 correspond to the parts of the sequence that are not CpG
island and 1 correspond to the part of the sequence that have been recognized as CpG
island.

The training set must be represented in a text file, in which each line (composed by
A’s, C’s, G’s and T’s) corresponds to a different sequence of DNA. In our example
we use the file “training_set”, which have 636 different DNA sequences. To obtain
this file we have use the program “modify”, invoked with the file “cpg_set” which
contains 636 CpG islands, as we have explained above.

The sequence to be recognized has to be represented in the same way in another text
file. We have used the files “test1”, “test2”, “test3” and “test4”.

To invoke the application we only have to type:

 $> cpg <training_file> <sequence_file>

And we will obtain the model parameters before and after the training stage, and the
recognized string compared with the original sequence.

After the tests we have proved the same sequences in the tool: “CpG Islands Plot” of
the European Bioinformatics Institute (EBI), that can be found at:
http://www.ebi.ac.uk/emboss/cpgplot/, to make a comparison with our results.

Due to the training set and the initial values for the parameters are the same for all the
tests, the final parameters after training are also the same for each example:

Initial parameters:

Matrix A:
State 1 State 2

State 1: 0.600000 0.400000
State 2: 0.500000 0.500000

Matrix E:
A C G T

State 1: 0.300000 0.200000 0.200000 0.300000
State 2: 0.200000 0.300000 0.300000 0.200000

Parameter after training stage:

Matrix A:
State 1 State 2

State 1: 0.620211 0.379789
State 2: 0.519492 0.480508

Raúl Lozano, Julián Cobos Tik-61.181 Bioinformatics

29.1.2001 11

Matrix E:
A C G T

State 1: 0.348647 0.152400 0.155769 0.343184
State 2: 0.241229 0.258088 0.263453 0.237230

These are the outputs for the tests of our tool and the EBI tool:

Test 1:

 Training file: training_set
 Sequence file: test1

Cpg output:

Sequence:TTATACTTAGTTGCATAGTAGAACATTATTATATTGATAACAGACACGTAGCAAGGCGTT
Opt.path:000000000000011000000000000000000000000000000001100110011110

CAGGGGGCTTTCGGTCCGGAAGCAGCGTCGGGGCGGGAATTCGAACCCTGAATCCTAAGATTAAGTCTA
000111111000111011110011011101111111110000110011100000110000000000000

CCACAATTTTGAAGTGACGATGAATGTGTCC
0110000000000000001100000000001

“Cpg Islands Plot” output:

CPGPLOT islands of unusual CG composition
from 51 to 110

Observed/Expected ratio > 0.60
Percent C + Percent G > 50.00
Length > 160

Test 2:

Raúl Lozano, Julián Cobos Tik-61.181 Bioinformatics

29.1.2001 12

 Training file: training_set
 Sequence file: test2

Cpg output:

Sequence:ACAGAAGAACATTATAGCGTTACAATAATTATATCTGATGTATTTTTGCCCATCCGCCCC
Opt.Path:000000000000000001110000000000000000000000000000111100111111

GGGGTNCGGCGAGCCTGTGTTCACCAAGCCATGCCACGGTTCCCGCGACCTAGCCGCACATATATCATT
111110011111011100000000110011100111011100111111011001111100000000000

TCTACATAAGCTGGGTTTAAATTCAAATATT
0000000000110111000000000000000

“Cpg Plot” output:

CPGPLOT islands of unusual CG composition
from 51 to 110

Observed/Expected ratio > 0.60
Percent C + Percent G > 50.00
Length > 160

Test 3:

 Training file: training_set
 Sequence file: test3

Cpg output:

Sequence:AATGTAATCTGCCATACTTTAGACAAAAAAATTTTAATGTCACTGACAAATCTTCGGAGT
Opt.path:0000000000011100011100

GCTGGGGCCCCTCCCGTNCATCCTCCTGAGCCCAGAGCCAGGGATCGCGGTGCAATAGATCGACTTTTT
011011111111011110000011011000111100011101110011111011000000011000000

CTAATCTTTCACTAGAAGGCCATTAATAACT
0000000000000000001111000000010

Raúl Lozano, Julián Cobos Tik-61.181 Bioinformatics

29.1.2001 13

“Cpg Plot” output:

CPGPLOT islands of unusual CG composition
from 51 to 110

Observed/Expected ratio > 0.60
Percent C + Percent G > 50.00
Length > 160

Test 4:

 Training file: training_set
 Sequence file: test4 (random sequence)

Cpg output:

Sequence:TGAATCGACTGTGTTTTAATACAAAGAATCTTTCTTGTCATAGTCGATATATTAGTTACC
Opt.path:000000110000000000000000000000000000000000000110000000000001

TAGTTATACTTGAAGACTTTCTGATATAGTTACATGAAGTACCTGATTTTGTGAAT
100011000000000000

Raúl Lozano, Julián Cobos Tik-61.181 Bioinformatics

29.1.2001 14

“Cpg Plot” output:

CPGPLOT islands of unusual CG composition
from 51 to 66

Observed/Expected ratio > 0.60
Percent C + Percent G > 50.00
Length > 116

Raúl Lozano, Julián Cobos Tik-61.181 Bioinformatics

29.1.2001 15

Conclusions

It is possible to conclude that the performance of the method is reasonably good, due
to the increased number of 1’s found in the CpG island fragments in the three first
examples. Taking into account that the outputs of the model are only based on the
probability of finding particular observations (C’s and G’s) in the sequences and not
on the structure of the CpG islands, due to the simplicity of the model which is only
two-state, the results of the tests reveal important similarities with the outputs of the
professional tool.

The search of possible improvements to this results would make necessary to change
the HMM for a more complex one, in which it would be fine to take into account the
differences between the transition probabilities between the observation of different
bases being inside or outside a CpG island.

We can use the forth sequence as a regulatory example to check the behavior of the
method with completely empty (of CpG) entries. The result is quite satisfactory
because only a few 1’s are found.

To end we would like to say that the work on the project has been more difficult and
long than expected, however it has been also more satisfactory. We hope that the
length of the report will not be a weakness of our project, because we have
compressed it as much as we have been able, and we think that a shorter project report
would not be representative of our work.

Raúl Lozano, Julián Cobos Tik-61.181 Bioinformatics

29.1.2001 16

References

• Source of the data (DNA sequences) : The Sanger Center, “CpG island tagging

project”. URL: http://www.sanger.ac.uk/HGP/cgi.shtml

• CpG finding applications: European Bioinformatics Institute (EBI).
 CpG islands finder. URL: http://www.ebi.ac.uk/cpg/
 CpG islands finder and plotter. URL: http://www.ebi.ac.uk/emboss/cpgplot/

• Lawrence Rabiner, Biing-Hwang Juang: Fundamentals of Speech Recognition.

Prentice Hall International (UK) Limited, London, 1993.

• R. Durbin, S. Eddy, A. Krogh and G. Mitchison: Biological Sequence Analysis,

Probabilistic models of proteins and nucleic acids. Cambridge University Press.

