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1 Preface

This paper is a summary of a selection of papers on a method called Spatio-Temporal
Self-Organizing Feature Maps (SOTPAR) [1, 2, 3, 4]. Further, we will assume that the
reader is familiar with the basics of self-organizing maps.

2 The Spatio-Temporal Self-Organizing Feature Map
(SOTPAR) Model

The SOTPAR model is based upon a traveling wave through the nodes of a Self-
Organizing Feature Map (SOFM), which progresses from each winner in a predeter-
mined “time” direction. That is, in the 2D-case, the wave travels in time along the
surface of the map in a specified direction. In the one dimensional case, the wave
travels (for example), left to right, which gives the following equation for temporal
activity

tempi(t) = λ||i,win(t0)||(1− λ)t−t0−||i,win(t0)||u(t− t0 − ||i, win(t0)||), (1)

whereλ is the attenuation factor,||i, win(t0)|| the distance between nodei and the
winning node at timet0 andu(·) the unit step function. See Fig. 1 for a demonstration
in the one dimensional case and Fig. 2 for the corresponding flow-graph. For higher
order systems, the wave front can be allowed to move in diagonal directions as well,
but according to our definition it always moves to the right. A demonstration of the
memory-kernel is depicted in Fig. 3.

Figure 1: Temporal activity created in the network by temporally ordered or unordered
input.

Figure 2: One-dimensional coupling of SOFM nodes for spatio-temporal activity.

Training of the SOTPAR model is simple and very similar to the regular SOFM
model. The two stages are very much alike SOFM: Firstly, find the winning node,
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Figure 3: Memory-kernel for SOTPAR.

and secondly, update the neighborhood weights of the winning node. The second step
is equal to SOFM, but in the first stage we add a temporal weighting to the winning
criterion. The winner is the selected with the following formulas

win(t) = arg min
1≤j≤N

[
||x, wj || − β · tempj(t)

]
(2)

tempj(t) = λ ·
[
tempj(t− 1) + δj,win(t−1)

]
+(1− λ) ·

[
tempj−1(t− 1) + δj−1,win(t−1)

]
, (3)

whereβ is the Temporal/Spatial Proportion (TSP) parameter,λ defines the temporal
decay andδ is the Kronecker delta function.

3 Simulation

As a first experiment, a simple toy-example was constructed. The input data was uni-
formly distributed data on[0, 1] × [0, 1] which was concatenated with a 20 sample
’L’-shaped figure (from[0.5, 1.0] → [0.5, 0.5] → [1.0, 0.5]) with additive uniform
noise (between±0.05).

This input sequence was trained on a regular SOFM and the proposed SOTPAR
model. A demonstration of the results is depicted in figure 4. The results show that
whereas SOFM does not catch the temporal ’L’-shape, SOTPAR does a good job find-
ing that sequence. In addition, both models cover the whole space adequately.

Continuing with a slightly more difficult task, the input data was altered so that
the ’L’-shaped sequences were time-warped (shrunken and stretched) up to 50%. The
results are shown in Fig 5. The desirable properties are successfully maintained, that
is, the test sequence is still correctly temporally mapped. Notice also how the sequence
of winners catches the temporal data.

Finally, the experiment was extended to include two, overlapping ’L’-shaped fig-
ures. Results are shown in Fig. 6. It is obvious that while the input data becomes more
complex, the model will also become more complex. However, both sequences are
clearly found even though the model has a discontinuity in the lower left corner ’L’-
figure. In addition, the two ’L’-shaped figures have now seemingly become dominant
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Figure 4: One-dimensional mapping of a two-dimensional input space with an embed-
ded ’L’-shaped figure.

Figure 5: One-dimensional mapping of a two-dimensional input space with embedded
time-warped ’L’-shaped figures.

in the input space in such an extent that the rest of the space obtains a small number of
nodes only.

4 Application to Robot Landmark Recognition

Consider the problem of a robot recognizing landmarks with infra-red sensors. The
field of view is limited (approx. 10 degrees) and close range. The movements of
the robot are sluggish and the exact position is unknown. The task is to recognize
landmark objects by moving around them by the wall from an unknown starting point.
The turning points (corners of the object) and travelling times between them are the
features.

In a simulation of this problem, we have two training objects (see Fig. 7) an ’L’-
shaped figure and a square. Two maps are trained, one for each object, and in the
recognition test, the map that stabilizes at a higher activity level wins. See Fig. 7 for
results. When the robot starts travelling around the object, both maps obtain similar
activity levels. Since there are two differences in the objects (the ’L’-shaped figure
has two more corners), the map trained with squares will find unlikely features and
stabilize at a lower activity level. It is evident that each time the map trained with
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Figure 6: One-dimensional mapping of a two-dimensional input space with multiple
embedded ’L’-shaped figure.

squares reaches the “wrong” turning point in the ’L’-shape, the activity level drops,
until familiar features are once again found and the activity level rises. Since the two
shapes are so similar, this should have been a difficult problem. Nevertheless, the
model sovles the problem quite elegantly. However, this approach requires multiple
circumsions of the landmark object since the robot does not have any way of knowing
when it has reached its starting point. This could be avoided with external logic to
identify completetion of a full round, and then inputting repeatedly the data of the
single round subsequently to the map. However, the noise present in the single round
would then play a significant role in the task, a role that might be diminished with
several round around the object.

Figure 7: Maximum activity levels of two networks trained for an ’L’-shaped figure
and a square, exited with an ’L’-shaped figure. The solid line denotes activity of map
trained with the ’L’-shape, dashed line the square figure.

5 SOTPAR2

In SOTPAR2 the idea of SOTPAR is generalized so that the temporal direction in the
map is relaxed to modification as subject to training. The temporal activity is now
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defined by

tempi(t + 1) = αtempi(t) +

∑
k

{[
µf(d, k) + (1− µ)tempk(t)

]
pk,i

}
max(p)

, (4)

where tempi(t) is the temporal activity at nodei at timet, α is a decay constant less
than 1,pi,j the connection strength from nodei to j, µ a parameter which smoothes the
activity giving more or less importance to the past activity in the network andmax(p)
a normalisation coefficient. Functionf(·) relates the how the current match contributes
to the activity, andd is a vector of distancesdi to each nodei.

This design implies that previous winners all affect the output activity of the current
winner. Known paths through the map will therefore get higher selection probability at
the next round. If the data has followed a known path but deviates from it temporarily,
the wave will continue along the path in case the data would soon return to that path.
This also implies that the Voronoi regions of each node change according to previous
winners, that is, the Voronoi region of a node corresponding to the next element in a
known path will be significantly larger than when travelling along some other path or
no path at all. This property is demonstrated in Fig. 8.

Figure 8: The Voronoi region of elements when previous inputs are not on a known
path (left figure) and when previous inputs are on a path leading to element 27 (right
figure).

6 Discussion

We have, in previous presentations, seen many different types waves along the surface
of SOF maps. The method studied in this paper, Spatio-Temporal Self-Organaizing
Maps, are different in the sense that the waves propagate in a specified direction (SOT-
PAR) or in a direction regulated by self-organization (SOTPAR2). One question that
was left open in the presented material is behaviour of maps when the input propagates
along a known path faster than any of the training data. One would expect that this
would produce a severe failure in recognition. However, all the presented simulations
showed encouraging results.
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