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1. Introduction 

This paper gives an overview of three algorithms for handling sequences and time series. The 
paper by Dobrzewski et al.[1], presented in chapter 2, is about incorporating temporal ordering 
of a sequence to a self-organizing map. The other two papers by Fancourt & Principe [2], [3] 
consider segmentation and identification of time series with competitive predictors. These 
algorithms of these papers are presented shortly in chapter 3. The paper ends with a discussion 
about the algorithms presented.  
 
2. Wave propagation in SOM 

Self-organizing maps suit well for classification of static feature vectors. Wave propagation 
algorithm suggested by Dobrzewski et al. [1] is a way to capture also the temporal aspects of an 
input sequence to a self-organizing map. In the algorithm the previous features affect the choice 
of the winning nodes by changing the activation sensitivity of the nodes in waves around the 
previous winners. 
 
The wave propagation algorithm starts with a conventional self-organizing map procedure. A 
feature vector U is presented to the map and a winning reference vector W is found. After this 
the algorithm proceeds to wave propagation to represent the temporal order of the features. A 
wave Ψi(r,t) at time t at position r starts at time t=ti at the position of the winner, ri

win. The 
index i is the number of the feature vector Ui in the sequence. Wave propagation ends at time 
ti+1 when the next feature vector Ui+1 is presented to the map. Now the wave is defined as  
 
 ( ) ( )( ) ( )( ) ( )tHbctddctt? iwinwinii ,'', rrrr +−−= HH   (1) 
 
where t'=t-ti, b is the wave crest width, dwin(r)= is the distance of a node from the winner node, 
H is the Heaviside function, H(x)=0 if x<0, and H(x)=1 otherwise, and H(r,t) is a "history 
function". The history function restricts wave propagation according to the past winners. In the 
beginning of a new sequence  
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The value of the history function is set to zero at positions r, which the wave crest has left, i.e.  

 
( ) ( ) 0, if 0, →→ t? itH rr     (3) 

 
and it remains zero for the rest of the sequence. Thus, a subsequent wave does not propagate 
into a region where an earlier wave has been during the same sequence.  
 
The described wave propagation is illustrated in Figure 1. The node's probability to win is 
enhanced in the final wave region according to the equation 
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As stated earlier, the first winner (i=1) is determined in the standard way, i.e. Ψ0=0, giving  the 
standard SOM winner node determination. The  term β  in Eq. (4) determines how much feature 
similarity or sequence position is emphasized. A choice β=0 leads to the standard SOM . If 
β>0, the receptive fields of nodes (i.e. the regions where the node win the competition for the 
feature vector) with Ψi=1 are enlarged. Increasing β  increases also the receptive fields until 

jiji ,∀−> WWβ , when the whole feature space is partitioned by the nodes on the wave 



crest. This means the winner node is always positioned on the crest and the later the feature 
vector is presented, the farther from the predecessor it will be represented. If the sequence is 
long, the wave could have left the whole map, i.e. Ψi(r,t)0=0 for all the nodes. In this case the 
winner is determined according to the standard SOM algorithm.  
 

 
Figure 1. Three waves on the map started by three subsequent winner nodes at positions ri

win. 

The wave propagation concept was implemented in digital hardware of 16 microcontrollers. 
These microcontrollers represented map nodes and they were used in processing of a 4-
phoneme sequence "M O T O" . Each phoneme was described by energies of 3 frequency 
channels resulting to a 3-dimensional feature vector. After normalization the feature vectors lie 
on a 2-dimensional plane. The results of a 1-dimensional 16 node network are in Figure 2. 
 

 
Figure 2. Representation of the phoneme sequence "M O T O" with two different values of β . 

 



3. Neighborhood map of predictors 

The papers of Fancourt & Principe [2], [3] describe an off-line technique for unsupervised 
segmentation and identification of time series. The technique is based on neighborhood map of 
competitive one step predictors. The map competes for the data and during the learning phase 
the winning predictor gets the largest parameter update. The other predictors get smaller 
updates according to their distance from the winner on the neighborhood map. 
 
The winner of the competition for the data is is the one with the smallest memory of squared 
error: 
 
 ( ) ( )( )nnwinner i
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where ε i

2(n) is the memory of ith predictor's squared error at time step n. The memory of 
squared error is determined with exponentially decaying window 
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where ei

2(n) is the instantaneous squared error and λ is the memory term(0<λ<1). The effective 
memory depth, i.e. the number of samples, is λ-1. 
 
The learning rate of a predictor is  
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where j is the winning predictor, di,j(n) is the neighborhood distance from predictor i to j at time 
n and σ is the parameter for neighborhood width. Both the neighborhood width σ and the 
global learning rate g of the map are exponentially annealed: 
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where τ is the annealing rate. Thus, the total learning rate for predictor i is  
 
 ( ) ( ) ( )nngn jii ,Λ=η     (9) 
 
Simulations where run to give a view of the performance of the algorithm. In all of the 
simulations linear predictors trained with normalized LMS were used. The map is one 
dimensional continuous map with last node mapped next to the first. The training was done 
with 50 passes through the entire time series with annealing rate of τ=5 passes. 
 
The first simulation was made with a switching FIR process. The process has 8 stationary 
regions (Figure 3a). The results in Figure 3b are fairly good, except unexpectedly long winning 
period for predictor 8 and some errors near samples 200 and 475. The latters are due to the 
outliers in the time series.  



 
Figure 3. Switching FIR process: a) time series, b) winning predictors after training. 

Another simulation was run with speech sample. The sample was word "alone" from Timit 
database and 7 predictors were used for segmentation. The sample and the results are in the 
Figure 4. The segmentation achieved is close to the Timit suggested phoneme segmentation 
shown in the figure. However, the same predictor won both the /a/ and /ow/ phonemes and 
predictors 1 and 7 won less than 1% of the time. This suggests that the activation distribution of 
the nodes is not optimal. 
 

 
Figure 4. Speech example: a) time series and phoneme segmentation, b) winning predictors 

after training. 

 
The second paper of Fancourt & Principe [3] also proposes a self-annealing competitive 
prediction, a way to couple the degree of competition and the memory depth. This eliminates 



the need for separate annealing of the memory depth and the competition. Moreover, the 
memory term λ does not need to be experimentally determined anymore like in neighborhood 
map algorithm. However, the results of the self-annealing algorithm are not as good as with the 
neighborhood map.  
 
 
5. Discussion  

The wave propagation algorithm of Dobrzewski et al. represents well the temporal aspects of 
the sample phoneme sequence. However, at the same time this weakens the map's ability to 
preserve topology. Thus, there is a contradiction between competitive ordering and topographic 
mapping. This is a clear weakness of the algorithm at least in situations where very different 
feature vectors succeed each other in the sequence or where similar feature vectors are far from 
each other in the temporal sense.  
 
Fancourt & Principe's neighborhood map of competing predictors gives encouraging results in 
the segmentation and identification tasks. The predictors can be trained parallel in their usual 
way and the only information from the map is the adjustments to the learning rates. One 
weakness of the algorithm is its need for manual memory depth optimization. In the 
simulations presented, the memory depth was optimized experimentally, thus increasing the 
time needed for the training. The self-annealing algorithm described in the second paper of 
Fancourt & Principe solves the problem of memory depth determination but the results are 
clearly worse than with the neighborhood map. 
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