Markku Roiha, Program work for bioinformatics
January 2001

Program work – the document

Introduction

A Java program to predict RNA secondary structure using minimum-energy principle and dynamic programming

Secondary structure of RNA chain is predicted by finding the nucleotides in RNA molecule that base pair. Prediction of pairing bases is based in simple algorithm from Setubal & Meidanis [1], eq. (8.2). This algorithm merely finds pairs of bases and is not as sophisticated as algorithm in [1] eq. (8.4) where different structures are taken into account. This limited scope algorithm does demonstrate the principle well, though.

Algorithm is basic dynamic programming algorithm which means that structure is predicted on expectation that structure is determined by nucleotides that base-pair. Practically this means that if in an open RNA molecule we have suitably placed bases A and T those may base pair and bend the open structure. Assumption that free-energy – structure - is determined by base pairs only is a big approximation in this algorithm.

Output

Program prints out the sequence the structure of which is to be predicted, the free-energy matrix, and the predicted structure of RNA chain. (See figure 1).

1[image: image1.png]= W B ¢

MyComputer Setupfor Miciosolt Sharteutto

8 CAWINNT Wiew.exe

[RNA sequence the structure of which is predicted:

hGCTAGCT

[Base pairs of predicted RNA structure:

p1234567acGCTAGET
?65432101CCATCGA

Ce

Amored Fist 2 Fight Simulator ~_PHDB
Demo % Databa,

2 ¥ =

Microsaft ~ Lotus co_Mal ReaPlayer
Outock ~ Moble603 PusG2

G oA B

MSN Goming LotusNotes ~ Shivamk

» B m

Evcel Regedit

Figure
Input
The sequence of the structure predicted is given as an integer vector in the main subroutine of Java program (rnaChain[]). When changing a sequence, program code has to be edited which is a downside. It could be easily replaced by command line parameter or by reading from a file.

Public static void main (String[] args)
{

int rnaChain[] = {0,1,2,3,0,1,2,3};

int lenChain = rnaChain.length;

Class1 eCalc = new Class1(rnaChain);

eCalc.FreeEnergy(rnaChain, 0,lenChain-1);

eCalc.PairTraceback(rnaChain,0,lenChain-1);

eCalc.DumpSequence(rnaChain);

eCalc.DumpES();

eCalc.DumpPairs(rnaChain);

}

 Weight matrix that describes free energies of different base pairs are also hard coded to the program as matrix alpha[][]:

/* free energy of pairs: This is not realistic as e.g. GA pair is not possible

 only possible pairs are A-T and G-C, but these free energies have been chosen

 to demostrate the algorithm. Otherwice this algorithm would be rather dull.

A G C T

A 0 -1 -1 -9

G -1 0 -9 -1

C -1 -9 0 -1

T -9 -1 -1 0

*/

int alpha[][] = {{ 0, -1, -1, -9},

 {-1, 0, -9, -1},

 {-1, -9, 0, -1},

 {-9, -1, -1, 0}};

Matrix of free energies in this example enables illegal base pairs. Illegal base pairs are easily avoided by proper tuning of weight matrix, in this case giving proper pairs values of –9 and improper ones –1. As optimisation tries to minimise score this should lead to result looked for.

The class diagram and the sequence diagram of program with Rational Rose:

[image: image2.png]Classl

Salphall[] : int
S5t
&Pair] : int
&intToBaseMapl] : char

Srmaing

SClass1()
SFreeEnergy()
SpPaiTraceback()
SpumpSequence()
SDuMpES()
SDumpPairs()

[image: image3.png]B

eCalc_ Classl

| Class1 (int) |

|

FreeEnergy(int, int, int) |

PairTracebackfnt, int, inf) |

DurnpSedquence(int)

I

DurmpESoid)

|

DurnpPairs(int)

l

Algorithm

The heart of algorithm is the function FreeEnergy().

private int FreeEnergy(int RNA[],int iR, int jR) {

int k;

int E_heads, E_min, E_tmp;

if (iR>=jR) {

ES[iR][jR] = 0;

}

else if (jR-iR == 1) {

ES[iR][jR] = alpha[RNA[iR]][RNA[jR]];

}

else {

E_heads = FreeEnergy(RNA,iR+1,jR-1) + alpha[RNA[iR]][RNA[jR]];

E_min = 0; //FreeEnergy(R,iR,jR);

for (k=iR+1;k<jR;k++)
{

E_tmp = FreeEnergy(RNA,iR,k)+FreeEnergy(RNA,k+1,jR);

if (E_tmp<E_min) E_min = E_tmp;

}

if (E_heads < E_min) E_min = E_heads;

ES[iR][jR] = E_min;

}

return ES[iR][jR];

}

Algorithm works like the description on Setubal&Meidanis [1] equation 8.2:

Algorithm gets string RNA as input as well as indices iR and jR which are positions in the string between which the algorithm tries to find the minimum energy. In the beginning iR is the start of the string and jR is the end of the string. As function is recursively called with smaller iR and jR each time, eventually algorithm calculates free energy of one pair.

Algorithm tries to find minimum energy by first guessing the tail and head of the sequence form a pair. The energy of this structure would be pairwice energy of these two pairs plus energy of the rest of string (iR+1,jR-1).

The other option is that tail and head are not paired and head forms a pair with some other base in between iR and jR. This is tried by trying all possible pairs between iR and iR (for k=iR+1;k<jR;k++).

The minimum energy structure is formed from either of the mentioned way – right pair is the one that minimised energy. Therefore in the end of the algorithm energies are compared and the minimum one is chosen.

This algorithm is reversed when doing the traceback from optimal scoring:

private void PairTraceback(int RNA[], int iS, int jS)
{

int E_this = ES[iS][jS]; // makes easier to read

if (iS<0 || iS>jS-1) return;

if (E_this == ES[iS+1][jS-1] + alpha[RNA[iS]][RNA[jS]]) {

Pair[iS] = jS;

Pair[jS] = iS;

PairTraceback(RNA,iS+1,jS-1);

}

else {

int k;

for (k=iS;k<jS;k++) {

if (ES[iS][k]+ES[k+1][jS] == E_this) {

PairTraceback(RNA,iS,k);

PairTraceback(RNA,k+1,jS);

}

}

}

}

Algorithm finds the path that that led to optimum solution. Basically, this means that algorithm tries whether it was the head and tail that formed pair. If it was not then it must have been some other base that formed pair with head.

It would be possible to make algorithm run faster if the optimum path was stored when calculating forward. This solution would increase use of memory but traceback algorithm would not need to loop back which means time complexity of O(n2) where n is the length of RNA sequence.

References

[1] Setubal, Joao and Meidanis, Joao: Introduction to computational molecular biology, Brooks/Cole Publishing Company, 511 Forest Lodge Road, Pacific Grove, CA 93950, USA

Program listing

public class Class1

{

/* free energy of pairs: This is not realistic as e.g. GA pair is not possible

 only possible pairs are A-T and G-C, but these free energies have been chosen

 to demostrate the algorithm. Otherwice this algorithm would be rather dull.

A G C T

A 0 -1 -1 -9

G -1 0 -9 -1

C -1 -9 0 -1

T -9 -1 -1 0

*/

int alpha[][] = {{ 0, -1, -1, -9},

 {-1, 0, -9, -1},

 {-1, -9, 0, -1},

 {-9, -1, -1, 0}};

// ES is the energy of (RNA) string S(i,j) in dynamic programming matrix

int ES[][]; // = new int[RNA_LEN][RNA_LEN];

// Pair. Value of e.g. Pair[0] is the base in the sequence with which first

// element of the string forms a pair. 4 3 2 1 means that O pairs w/ 3 and 1 w/ 2

int Pair[]; // = {-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,-1};

static final char intToBaseMap[] = {'A','G','C','T'};

public static void main (String[] args)
{

int rnaChain[] = {0,0,2,2,2,1,1,1};

int lenChain = rnaChain.length;

Class1 eCalc = new Class1(rnaChain);

eCalc.FreeEnergy(rnaChain, 0,lenChain-1);

eCalc.PairTraceback(rnaChain,0,lenChain-1);

eCalc.DumpSequence(rnaChain);

eCalc.DumpES();

eCalc.DumpPairs(rnaChain);

}

Class1(int[] rnaChain)

{

int lenChain = rnaChain.length;

Pair = new int[lenChain];

for (int i=0;i<lenChain;i++) Pair[i] = -1; // initialize all pairs to illegal value

ES = new int[lenChain][lenChain];

}

private int FreeEnergy(int RNA[],int iR, int jR) {

int k;

int E_heads, E_min, E_tmp;

if (iR>=jR) {

ES[iR][jR] = 0;

}

else if (jR-iR == 1) {

ES[iR][jR] = alpha[RNA[iR]][RNA[jR]];

}

else {

E_heads = FreeEnergy(RNA,iR+1,jR-1) + alpha[RNA[iR]][RNA[jR]];

E_min = 0; //FreeEnergy(R,iR,jR);

for (k=iR+1;k<jR;k++)
{

E_tmp = FreeEnergy(RNA,iR,k)+FreeEnergy(RNA,k+1,jR);

if (E_tmp<E_min) E_min = E_tmp;

}

if (E_heads < E_min) E_min = E_heads;

ES[iR][jR] = E_min;

}

return ES[iR][jR];

}

private void DumpSequence(int rnaSeq[]) {

int i,j;

System.out.println("\nRNA sequence the structure of which is predicted:");

for (i=0;i<rnaSeq.length;i++) { // square matrix anyway

System.out.print(intToBaseMap[rnaSeq[i]]+" ");

}

}

private void DumpES() {

int i,j;

System.out.println("\n\nMatrix of free energies for dynamic programming:\n");

for (i=0;i<ES.length;i++) { // square matrix anyway

for (j=0;j<ES.length;j++) {System.out.print(ES[i][j]+"\t");}

System.out.println("");

}

}

private void PairTraceback(int RNA[], int iS, int jS)
{

int E_this = ES[iS][jS]; // makes easier to read

if (iS<0 || iS>jS-1) return;

if (E_this == ES[iS+1][jS-1] + alpha[RNA[iS]][RNA[jS]]) {

Pair[iS] = jS;

Pair[jS] = iS;

PairTraceback(RNA,iS+1,jS-1);

}

else {

int k;

for (k=iS;k<jS;k++) {

if (ES[iS][k]+ES[k+1][jS] == E_this) {

PairTraceback(RNA,iS,k);

PairTraceback(RNA,k+1,jS);

}

}

}

}

private void DumpPairs(int rnaSeq[]) {

int i;

System.out.println("\n\nBase pairs of predicted RNA structure:\n");

for (i=0;i<Pair.length;i++) {

System.out.print(i+" ");

}

for (i=0;i<Pair.length;i++) {

System.out.print(intToBaseMap[rnaSeq[i]]+" ");

}

System.out.println("\n");

for (i=0;i<Pair.length;i++) {

System.out.print(Pair[i]+" ");

}

for (i=0;i<Pair.length;i++) {

if (Pair[i]<0) // not paired with any base

System.out.print(" ");

else

System.out.print(intToBaseMap[rnaSeq[Pair[i]]]+" ");

}

}

}

_1043513161

_1043518427

_1043513017

