1. Given a hidden Markov model (HMM, page 610) and observations \(y_1, \ldots, y_{t-1} \), show that the predictive distribution of the observations \(y_t \) at time point \(t \) follows a mixture distribution.

Solution:
Let us first write the joint distribution of all variables:

\[
P(y_1, \ldots, y_t, z_1, \ldots, z_t) = P(z_1)P(y_1 \mid z_1) \prod_{\tau=2}^{t} P(z_\tau \mid z_{\tau-1})P(y_\tau \mid z_\tau). \quad (1)
\]

Then we can manipulate the predictive distribution:

\[
P(y_t \mid y_1, \ldots, y_{t-1}) = \sum_{z_t} P(y_t, z_t \mid y_1, \ldots, y_{t-1})
\]

\[
= \sum_{z_t} P(z_t \mid y_1, \ldots, y_{t-1})P(y_t \mid z_t, y_1, \ldots, y_{t-1})
\]

\[
= \sum_{z_t} P(z_t \mid y_1, \ldots, y_{t-1})P(y_t \mid z_t),
\]

which is clearly a mixture distribution with the posterior distribution of the latent variable \(P(z_t \mid y_1, \ldots, y_{t-1}) \) as the mixture coefficients and \(P(y_t \mid z_t) \) as the component distributions.

2. Show how a second-order Markov chain (page 608) of 3 symbols can be transformed to a hidden Markov model with 9 states and 3 symbols.

Solution:
A second order Markov chain has a model for \(P(y_t \mid y_{t-2}, y_{t-1}) \).

\[
P(y_t \mid y_{t-2}, y_{t-1}) = \begin{array}{cccccccc}
{aa} & {ab} & {ac} & {ba} & {bb} & {bc} & {ca} & {cb} & {cc} \\
y_t = a & . & . & . & . & . & . & . & . \\
y_t = b & . & . & . & . & . & . & . & . \\
\end{array}
\]

By setting the hidden state \(z_t \) to contain both \(y_{t-1} \) and \(y_t \) as a concatenated symbol, we can emulate the second order Markov chain by a hidden Markov model using the following tables:
\[
P(y_t | z_t) \begin{array}{cccccccccc}
\hline
y_t = a & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
y_t = b & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
y_t = c & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 \\
\hline
\end{array}
\]

\[
P(z_t | z_{t-1}) \begin{array}{cccccccccc}
\hline
z_t = aa & \cdot & 0 & 0 & \cdot & 0 & 0 & \cdot & 0 & 0 \\
z_t = ab & \cdot & 0 & 0 & \cdot & 0 & 0 & \cdot & 0 & 0 \\
z_t = ac & \cdot & 0 & 0 & \cdot & 0 & 0 & \cdot & 0 & 0 \\
z_t = ba & 0 & \cdot & 0 & 0 & \cdot & 0 & 0 & \cdot & 0 \\
z_t = bb & 0 & \cdot & 0 & 0 & \cdot & 0 & 0 & \cdot & 0 \\
z_t = bc & 0 & \cdot & 0 & 0 & \cdot & 0 & 0 & \cdot & 0 \\
z_t = ca & 0 & 0 & \cdot & 0 & 0 & \cdot & 0 & 0 & \cdot \\
z_t = cb & 0 & 0 & \cdot & 0 & 0 & \cdot & 0 & 0 & \cdot \\
z_t = cc & 0 & 0 & \cdot & 0 & 0 & \cdot & 0 & 0 & \cdot \\
\hline
\end{array}
\]

where the values \cdot are copied from the table of the second order Markov chain.

This shows that a hidden Markov model is more general than a second order Markov chain (and similarly of a Markov chain of any order).

3. Let us consider a HMM with a discrete hidden variable \(z \) with 6 states and a Gaussian observation (emission) probability density function. The dimension of the data vectors \(x_1, \ldots, x_T \) is 5 and the covariance function of the Gaussian distribution is diagonal. (a) Quantify the number of parameters in the model, (b) write the joint probability density, (c) and write the \(Q \)-function of the EM-algorithm \(Q(\theta, \theta^{\text{old}}) \) (page 440). Assume that the E-step is done, that is, \(\gamma(z_t) = P(z_t | X, \theta^{\text{old}}) \) and \(\xi(z_{t-1}, z_t) = P(z_{t-1}, z_t | X, \theta^{\text{old}}) \) are given.

Solution:

(a) Parameters \(\theta \) include the starting distribution \(P(z_1) = \pi = P(z_1 | z_0) \) with 6 parameters of which 5 are free, transition matrix \(\bar{A} \) with 36 parameters of which 30 are free, and parameters \(\mu_{ij} \) and \(\sigma^2_{ij} \) for the emission distribution (60 parameters, all of them free). That makes altogether 102 parameters of which 95 are free.

(b) A Gaussian distribution with a diagonal covariance can be repre-
presented as a product of 1-dimensional Gaussians.

\[p(X, Z \mid \theta) = \prod_{t=1}^{T} P(z_t \mid z_{t-1}, \theta) p(x_t \mid z_t, \theta) \]
\[= \prod_{t=1}^{T} a_{z_{t-1}, z_t} \prod_{k=1}^{5} \frac{1}{\sqrt{2\pi\sigma^2_{z_k,k}}} \exp\left[-\frac{(x_{tk} - \mu_{zk,k})^2}{2\sigma^2_{z_k,k}}\right] \]

\[Q(\theta, \theta^{\text{old}}) = \sum_{Z} P(Z \mid X, \theta^{\text{old}}) \ln p(X, Z \mid \theta) \]
\[= \sum_{Z} P(Z \mid X, \theta^{\text{old}}) [\ln P(Z \mid \theta) + \ln p(X \mid Z, \theta)] \]
\[= \sum_{i=1}^{T} \sum_{i=1}^{6} \sum_{j=1}^{6} \xi(z_{t-1,i}, z_{t,j}) \ln a_{ij} \]
\[+ \sum_{i=1}^{T} \sum_{i=1}^{6} \sum_{k=1}^{5} \gamma(z_{ti}) \ln \left(\frac{1}{\sqrt{2\pi\sigma^2_{ik}}} \exp\left[-\frac{(x_{tk} - \mu_{ik})^2}{2\sigma^2_{ik}}\right]\right) \]
\[= Q_z + \sum_{i=1}^{T} \sum_{i=1}^{6} \sum_{k=1}^{5} \gamma(z_{ti}) \left[-\frac{(x_{tk} - \mu_{ik})^2}{2\sigma^2_{ik}} - \frac{1}{2} \ln(2\pi\sigma^2_{ik})\right] \]
\[= Q_z + Q_x, \]

where the division into two parts \(Q_z + Q_x \) will be useful in Problem 4.

4. In the setting of Problem 3, (a) derive the M-step for the Gaussian means \(\mu_{ik} \), where \(i = 1 \ldots 6 \) denotes the state and \(k = 1 \ldots 5 \) denotes the data dimension. (b) Derive the M-step for updating the \(6 \times 6 \) transition matrix \(A \).

Solution:

(a) As we maximize the Q-function w.r.t. a particular \(\mu_{ik} \), the part \(Q_z \) is constant, and from the sums over \(i \) and \(k \), all the other terms are constant
except the one we are interested in. Therefore we only need:

\[
\frac{\partial}{\partial \mu_{ik}} \sum_{t=1}^{T} \gamma(z_{ti}) \frac{(x_{tk} - \mu_{ik})^2}{2\sigma_{ik}^2} = 0
\]

(13)

\[
\sum_{t=1}^{T} \gamma(z_{ti}) \frac{x_{tk} - \mu_{ik}}{\sigma_{ik}^2} = 0
\]

(14)

\[
\mu_{ik} = \frac{\sum_{t=1}^{T} \gamma(z_{ti}) x_{tk}}{\sum_{t=1}^{T} \gamma(z_{ti})}
\]

(15)

that is, \(\mu \) will be the weighted average of the data points assigned to the cluster (or state) \(i \), the weights being the probabilities \(\gamma \) that this point belongs to this cluster.

(b) Next we should maximize \(Q \) w.r.t. an element of the transition matrix \(a_{ij} \). This time \(Q_x \) is a constant that can be ignored. If we simply try to find the zero of the gradient, we notice that increasing \(a_{ij} \) will always increase \(Q \) so there is no zero of the gradient. We need to take into account the constraint \(\sum_{j=1}^{6} a_{ij} = 1 \forall i \). One way to do this is to introduce Lagrange multipliers \(\lambda_i > 0 \) for each constraint \(i \). We will now maximize

\[
Q_z - \lambda_i \left(\sum_{j=1}^{6} a_{ij} - 1 \right)
\]

(16)

instead. The intuition behind this is to introduce a “counter-force” that balances the ever increasing \(a_{ij} \)s. When the force \(\lambda_i \) is just right, it will set the constraint to be true, and the modified cost function in Eq. (16) will be equal to \(Q_z \) since \(\left(\sum_{j=1}^{6} a_{ij} - 1 \right) = 0 \).

Let us try to maximize (16) by finding the zero of the gradient:

\[
0 = \frac{\partial}{\partial a_{ij}} \left[\sum_{t=1}^{T} \xi(z_{t-1,i} z_{ij}) \ln a_{ij} - \lambda_i \left(\sum_{j'=1}^{6} a_{ij'} - 1 \right) \right]
\]

(17)

\[
= \frac{\sum_{t=1}^{T} \xi(z_{t-1,i} z_{ij})}{a_{ij}} - \lambda_i
\]

(18)

\[
a_{ij} = \frac{\sum_{t=1}^{T} \xi(z_{t-1,i} z_{ij})}{\lambda_i}
\]

(19)
Thus, λ_i turned out to be a normalization constant, whose value we can compute from

$$
\sum_{j=1}^{6} a_{ij} = \sum_{j=1}^{6} \frac{\sum_{t=1}^{T} \xi(z_{t-1,j}, z_{t,j})}{\lambda_i} = 1 \quad (20)
$$

$$
\lambda_i = \sum_{j=1}^{6} \sum_{t=1}^{T} \xi(z_{t-1,i}, z_{t,i}). \quad (21)
$$