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0. Jaakko Hollmén gave a demonstration on his software package Zone
for clustering zero-one data. This will be part of the project assignment.

1. Given a Naive Bayes model with four binary variables C, Xj, X5, X3, that
is P(C, X1, X3, X3) = P(C)P(X; | C)P(X, | C)P(X3 | C) and a dataset with
tive samples t = 1...5 (see table below), write the likelihood function
P(C,Xy,X5, X3 | 0) of the model parameters 0 (the values in the condi-
tional probability tables). Find P(C) and P(X; | C = 1) that maximize the
likelihood (use the notation 1 = P(C =1)and 6, = P(X; =1 | C=1)).

ELC Xy Xy Xg
110 1 0 1
211 0 1 0
Data: 30 0 0 1 0
41 0 1 1
511 1 1 0
Solution:

Assuming the 5 samples independent of each other, the likelihood of
the parameters is the product of probabilities of each data sample given
the parameters, that is:

L(f) = ﬁP(Ct,XU,XZt,th) = ﬁP(Ct)P(XU | Ct)P(Xos | Cr)P(X3¢ | C)

t=1 t=1
1

Note that we write P(C) as a shorthand of P(C | ) etc. Because the loga-
rithm function is monotonically increasing, the maximum likelihood is the
same as maximum log-likelihood, and we would prefer sums over prod-
ucts, so let us turn to study the likelihood on the logarithmic scale.

5 3
logL(6) = ) log P(C;) + ) log P(X;s | Ci) )



The maximum of L can be found at the zero of the derivative. Most terms
of L are constant w.r.t. a particular parameter, so many of them can be
dropped out.
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The solution of 6, is very similar:
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0.67
P(X1|C=1)~ ( 0.33 ) (11)

We can note that the maximum likelihood solution is basically about count-
ing how many times each case happens, for instance C = 1 happens in
three cases out of five so P(C = 1) = 3/5 for the maximum likelihood
estimate of 6.

2. Given a Naive Bayes model with three binary variables defined by the
tables below, classify the data set below. Classification is defined as C* =
arg maxc P(C | X1, X3).

P(C)

C=0 | 0.7

C=103



P(X;|C)|C=0 C=1
X;=0 | 05 038
X;=1 |05 02

P(X,|C) | C=0 C=1
X,=0 | 06 03
X,=1 | 04 07

t| Xy Xo
Data: 1| 1 1
210 1
Solution:
P(C | X1,Xp) = %1’;(2)2), where P(X1,X;) is a normalization con-

stant. We have four cases:

P(C;1 =0,X11,X21) =P(C; =0)P(X;; =1|C; =0)P(Xp1 =1|C; =0)

=0.7-05-04 =0.14 (12)
P(Ci=1,X11,Xn) =P(C;=1)P(X11 =1|C, =1)P(X» =1|C; =1)
=0.3-0.2-0.7 = 0.042 (13)
P(Cp =0, X1, X2) = P(Co = 0)P(X1p = 0| C, = 0)P(Xpp = 1| C, = 0)
=0.7-05-0.4 =0.14 (14)
P(Co=1,X12,X0) =P(C, =1)P(X1p=0| C, = 1)P(Xpp = 1| C, = 1)
—=0.3-0.8-0.7 = 0.168 (15)

The normalization constants are
P(Xy1,X01) = P(C1 =0,X11,X01) + P(C1 =1, X117, X01) = 0182 (16)
P(X12,X2p) = P(C2 =0, X1p, X21) + P(C2 =1, X12, Xp1) = 0308 (17)

Now we can get the posterior probabilities for the classifications by nor-
malizing:

_ P(Cll Xll/XZl) - 0.769

P(Cy | X11,X21) = P(Xy, Xa1)  \ 0231 (18)
_ P(Cy, X12,X22) (0455

PG X Xn) = =555~ \ oses (19)

The best guess or the maximum a posteriori classification is thus C] = 0
and C; = 1.
Problems 3 and 4 were left for the next session.



