1. Consider a bent coin and how to estimate the probability of tails μ. The random variable $X \in \{0, 1\}$ (heads=0, tails=1) is distributed according to the Bernoulli distribution with the parameter μ (see page 685 in Bishop, 2006).

(a) Derive a maximum likelihood estimator for μ and estimate $\hat{\mu}$ for the data set from the lecture (7 heads and 5 tails out of 12 tosses).

$$P(\{X_i\}_{i=1}^{12} \mid \mu) = \prod_{i=1}^{12} \text{Bern}(X_i \mid \mu)$$

$$= \mu^5 (1-\mu)^7$$

The maximum likelihood solution is at the zero of the derivative of the likelihood:

$$\frac{\partial}{\partial \mu} P(\{X_i\}_{i=1}^{12} \mid \mu) = 5\mu^4 (1-\mu)^7 - 7\mu^5 (1-\mu)^6 = 0$$

$$\hat{\mu} = \frac{5}{12} \approx 0.42$$

Figure 1: Problem 1.(a) The likelihood of μ as a function of μ on the absolute scale (left) and on the logarithmic scale (right).
(b) Using a fair coin, what is the probability that out of 12 tosses, strictly more than 10 are heads (see Binomial distribution, page 686).

The Binomial distribution is defined as

\[\text{Bin}(m \mid N, \mu) = \frac{N!}{m!(N-m)!} \mu^m (1 - \mu)^{(N-m)}, \]

where \(m \) is the number of heads, \(N = 12 \) is the number of tosses, and \(\mu = 0.5 \) is the probability of heads.

\[P(m > 10) = \text{Bin}(m = 11 \mid 12, 0.5) + \text{Bin}(m = 12 \mid 12, 0.5) \]

\[= 13 \cdot 0.5^{12} \approx 0.0032 \]

Figure 2: Problem 1.(b) The Binomial distribution. The probability is plotted as a function of \(m = 0, 1, \ldots, 12 \) on the absolute scale (left) and on the logarithmic scale (right).

2. Compute the probability \(P(C \mid X) \) of using each coin in the guessing game from the lecture (see Bayes’ theorem, p. 15). There are two bent coins \((C \in \{c_1, c_2\})\) with different properties and the player guesses which coin was used after learning whether the toss was head or tails. The properties of the coins are: \(P(X = t \mid C = c_1) = \theta_1 \) and \(P(X = t \mid C = c_2) = \theta_2 \). The used coin is chosen randomly by \(P(C = c_1) = \pi_1 \) and \(P(C = c_2) = \pi_2 \) with \(\pi_1 + \pi_2 = 1 \).

The solution is the direct application of the Bayes theorem (first equa-
tion) and the marginalization principle (second equation):

\[
P(C = c_1 | X = t) = \frac{P(X = t | C = c_1)P(C = c_1)}{P(X = t)} \tag{8}
\]

\[
= \frac{P(X = t | C = c_1)P(C = c_1)}{\sum_{i=1}^{2} P(X = t | C = c_i)P(C = c_i)} \tag{9}
\]

\[
= \frac{\theta_1 \pi_1}{\theta_1 \pi_1 + \theta_2 \pi_2} \tag{10}
\]

and similarly

\[
P(C = c_2 | X = t) = \frac{\theta_2 \pi_2}{\theta_1 \pi_1 + \theta_2 \pi_2} \tag{11}
\]

\[
P(C = c_1 | X = h) = \frac{(1 - \theta_1) \pi_1}{(1 - \theta_1) \pi_1 + (1 - \theta_2) \pi_2} \tag{12}
\]

\[
P(C = c_2 | X = h) = \frac{(1 - \theta_2) \pi_2}{(1 - \theta_1) \pi_1 + (1 - \theta_2) \pi_2}. \tag{13}
\]

3. The Naïve Bayes model has a class label \(C \) and observations \(X_1, X_2, \ldots, X_6 \) such that \(P(X_1, X_2, X_3, X_4, X_5, X_6, C) = P(C)P(X_1 | C)P(X_2 | C) \ldots P(X_6 | C) \).

(a) Simplify \(P(X_1 | C, X_2) \)

First let us rewrite it without the conditional probability, using just the joint probabilities. Then we can apply the assumption of the Naïve Bayes model and finally simplify:

\[
(X_1 | C, X_2) = \frac{P(C, X_1, X_2)}{P(C, X_2)} \tag{14}
\]

\[
= \frac{P(C)P(X_1 | C)P(X_2 | C)}{P(C)P(X_2 | C)} \tag{15}
\]

\[
= P(X_1 | C) \tag{16}
\]

(b) Solve the classification problem: \(P(C | X_1, X_2, \ldots, X_6) \)

Let us apply the Bayes theorem, the marginalization principle, and fi-
nally the Naïve Bayes assumption:

\[
P(C \mid X_1, X_2, \ldots, X_6) = \frac{P(X_1, X_2, \ldots, X_6 \mid C)P(C)}{P(X_1, X_2, \ldots, X_6)}
\]

\[
= \frac{P(X_1, X_2, \ldots, X_6 \mid C)P(C)}{\sum_C P(X_1, X_2, \ldots, X_6 \mid C)P(C)}
\]

\[
= \frac{P(X_1 \mid C)P(X_2 \mid C)\ldots P(X_6 \mid C)P(C)}{\sum_C P(X_1 \mid C)P(X_2 \mid C)\ldots P(X_6 \mid C)P(C)}
\]

4. Draw a graphical representation of the models in problems 1, 2, and 3 where nodes represent random variables and arrows represent direct dependencies (see Bayesian Networks, page 360).

1. \[
\begin{array}{c}
\text{X} \\
\end{array}
\]

2. \[
\begin{array}{c}
\text{X} \\
\end{array}
\]

3. \[
\begin{array}{c}
\text{C} \\
\text{X}_1 \\
\text{X}_2 \\
\text{X}_3 \\
\text{X}_4 \\
\text{X}_5 \\
\text{X}_6 \\
\end{array}
\]

Figure 3: Problem 4.