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So far on the course...

Random variables and statistical independence
I Random variables and probability distributions
I Independence and conditional independence
I Bayes’s rule

Bayesian Networks
I Factorization of the joint probability distribution
I Graphical representation
I Markov Blanket and d-separation
I Inference as an application of the Bayes’s rule



Other sources for the interested

Textbooks on Bayesian Networks:
I Finn V. Jensen and Thomas D. Nielsen: Bayesian

Networks and Decision Graphs, Second edition,
Springer-Verlag, 2007.

I Richard E. Neapolitan: Learning Bayesian Networks,
Prentice-Hall, 2004.

I Learning in Graphical Models, edited by Michael
Jordan, MIT Press, 1999.

Graphical models, everything in condensed form:
I Michael I. Jordan: Graphical Models, Statistical

Science, voi 19, No. 1, pp 140–155,
http://dx.doi.org/10.1214/088342304000000026

http://dx.doi.org/10.1214/088342304000000026


Inference in Bayesian Networks
P(A, B, C, D, E) = P(A)P(B|A)P(C|A)P(D|B, C)P(E|C)

What is P(A|C = c, E = e) = ∑B ∑D P(A,B,c,D,e)
P(c,e) ?

∑
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D

P(A, B, c, D, e) =

∑
B

∑
D

P(e|c)P(c|A)P(D|B, c)P(A)P(B|A)

= P(e|c)P(c|A)P(A) ∑
B

∑
D

P(D|B, c)P(B|A)

= P(e|c)P(c|A)P(A) ∑
B

P(B|A) ∑
D

P(D|B, c)

= P(e|c)P(c|A)P(A).



Variable elimination

Formalization of the previous inference process
I We have a set of probability tables T
I We wish to marginalize a variable X:

I Take all tables from T that include X
I Calculate a product of them
I Marginalize x out of it
I Place the resulting table in T

In the example, we marginalized first over B, then D



Variable elimination

Variable elimination
I Marginalization eliminates variables from tables
I Elimination order has a large impact on the

complexity of the algorithm
I Rina Dechter: Bucket Elimination, Artificial

Intelligence, 1999
I http:

//dx.doi.org/10.1016/S0004-3702(99)00059-4

http://dx.doi.org/10.1016/S0004-3702(99)00059-4
http://dx.doi.org/10.1016/S0004-3702(99)00059-4


Inference in Bayesian Networks

Inference: having some observed variables, we wish to
compute the posterior probability of some other variables

I Variable elimination is one of the simplest exact
inference algortihms

I Variable elimination works directly on variables and
probability tables

I Next: Secondary representation based on the directed
graph (assumptions); local message passing
algorithms



Cliques and potential functions

Joint distribution may be written as a product of potential
functions of sets of variables xC:

I p(x) = 1
Z ∏C ψC(xc)

I ψC(xc) ≥ 0 ⇒ p(x) ≥ 0
I Partition function Z = ∑x ∏C ψC(xc)
I Partition function is a normalization constant
I Partition function may be difficult to compute!
I In calculating local conditional distributions (a ratio

of two distributions), Z cancels out
I xC need to be maximal cliques of the directed graph

Clique is a subset of nodes such that there exists a link
between all pairs of nodes in the subset



Hammersley-Clifford theorem

Consider
I set of distributions that are consistent with the set of

conditional independence statements that can be
read from the graph using graph separation

I set of distributions that can be expressed as a
factorization (as on the previous slide) with respect to
maximal cliques of the graph

Hammersley-Clifford theorem states the sets are identical



Example: directed and undirected chain

A Markov chain in directed and undirected form:
I p(x) = p(x1)p(x2|x1)p(x3|x2) . . . p(xN|xN−1)
I The elements are conditional probability

distributions
I Maximal cliques are the pairs of neighboring nodes
I p(x) = 1

Z ψ1,2(x1, x2)ψ2,3(x2, x3) . . . ψN−1,N(xN−1, xN)
I The elements don’t necessarily have probabilistic

implementation
We need operations (or a ”recipe”) to convert a
factorization over a directed graph to that of an
undirected graph!



Recipe: Constructing a Junction Tree

Take the directed acyclic graph and
I Moralize: Marry the parents with undirected edges
I Drop the direction of all arrows (moral graph)
I Triangulate the graph: find chordless cycles

containing four or more nodes, add links to eliminate
such cycles

I Construct a tree-structured undirected graph: nodes
are maximal cliques of the triangulated graph

I Connect pairs of cliques that have variables in
common

Now we have a junction tree, a secondary representation
for the original Bayesian network that allows simple
message passing algorithms



About the junction tree

I Multiple junction trees can be created from a given
starting position

I The size of the largest clique determines the
complexity of the inference procedure (treewidth)

I Treewidth is the (smallest) number of variables in the
largest clique minus one

I For trees, treewidth is one (simple inference)
I What kind of models have large treewidth?


