1 Probability Theory for Bayesian Networks

Let us consider discrete random variables x, y, z that can get discrete values $1, 2, \ldots, n$. We will write $P(x = 1)$ to mark the probability of the event that x has the value 1. We will also write $P(x)$ to denote the probability distribution of x. The axioms of probability theory define that the probabilities are at least zero and the sum of them over the entire sample space is 1:

$$P(x = i) \geq 0 \forall i = 1, 2, \ldots, n \quad (1)$$

$$\sum_{i=1}^{n} P(x = i) = 1. \quad (2)$$

We will write $P(x, y)$ to denote the joint probability distribution of x and y. For instance, $P(x = 1, y = 1)$ gives the probability of the event that both $x = 1$ and $y = 1$. When $P(x, y) = P(x)P(y)$, we say that x and y are independent, or $x \perp y$. Conditional probabilities are defined as follows:

$$P(x \mid y) = \frac{P(x, y)}{P(y)}. \quad (3)$$

This is read as “the probability of x given y”. It means that assuming that we already know the value of y, what is the probability of x. Conditional probability is especially useful for causal thinking, that is, if y might cause x, it is intuitive to think about $P(x \mid y)$.

From Eq. (3), we can derive two useful rules. First we notice we can divide joint probabilities into factors:

$$P(x, y, z) = P(x)\frac{P(x, y) P(x, y, z)}{P(x) P(x, y)} = P(x)P(y \mid x)P(z \mid x, y). \quad (4)$$

$$P(x, y, z) = P(x)P(y \mid x)P(z \mid x, y). \quad (5)$$
Then, we can prove the Bayes theorem by dividing $P(x, y)$ into factors both ways and by dividing both sides by $P(x)$:

$$P(x, y) = P(x \mid y)P(y) = P(y \mid x)P(x)$$ \hspace{1cm} (6)

$$P(y \mid x) = \frac{P(x \mid y)P(y)}{P(x)}.$$ \hspace{1cm} (7)

The Bayes theorem is useful to invert causality, that is, reasoning from the effects to the causes. For instance if y causes x but we want to know $P(y \mid x)$, we can use the Bayes theorem in Eq. (7). $P(y \mid x)$ is called the posterior of y, that is, what we know about y after we observe x. $P(x \mid y)$ is called the likelihood. $P(y)$ is the prior of y, that is, what we know about y before we observe x. $P(x)$ is called the evidence and often it is treated only as a normalization constant, because it is constant w.r.t. y.

Marginalization principle enables us to get rid of uninteresting variables. Say we are interested in $P(x)$ but we only know $P(x, y)$. We just take the sum over the possible values of y:

$$P(x) = \sum_y P(x, y) = \sum_y P(x \mid y)P(y).$$ \hspace{1cm} (8)

This is useful for instance to handle the evidence $P(x)$ in the Bayes theorem (Eq. 7).

What are Bayesian networks then? Recall from Equation (5) that we can always write the joint distribution of variables as a product of factors where one variable at a time is conditioned on previous ones. Then, we can make some independency assumptions by dropping out some of the conditioned variables. For instance if we assume that y and z are independent given x (that is, $y \perp z \mid x$), we can write

$$P(x, y, z) = P(x)P(y \mid x)P(z \mid x, y)$$ \hspace{1cm} (9)

$$= P(x)P(y \mid x)P(z \mid x).$$ \hspace{1cm} (10)

By making enough independency assumptions, a Bayesian network becomes an efficient representation of the joint probability.