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Protein-protein interaction networks

Q: Why study protein-protein interaction networks, isn’t it a rather specialized
topic? A: Potentially not, since proteins as the central workhorses contribute to
almost everything there happens in a cell. Mutual interactions between proteins
and between proteins and other molecules provide the potential mechanisms out of
which the suitable ones became chosen. Modeling the potential interactions gives
constraints to modeling cellular pathways: regulation, signaling and metabolism.
These pathways or their parts are natural candidates for disease markers, and maybe
also drug targets.

The measurements are very noisy and hence models are needed to cope with the
uncertainty in them. A side benefit of building such models is that they may be
applicable to other kinds of relational data as well.

1 Background

Proteins are central workhorses in the cell. They form the physical structure of
the cell and move the cells; they regulate gene activity as transcription factors and
through DNA methylation (gene silencing); they catalyze bio-chemical reactions of
metabolism as enzymes, and convey signals between cells and from the outside world
(signal transduction). Moreover, some proteins (kinases) activate (phosphorylate)
and others (phosphatases) deactivate (dephosphorylate) other proteins, mark them
for further processing (ubiquitination), and cleave them into pieces.

Proteins consist of chains formed of the 20 different amino acids. Typical length is
50-1000 amino acids but they may be longer. This forms a huge number of possible
proteins, out of which only a tiny fraction is actually found in nature.

The amino acid chain folds into a characteristic formation, a minimal energy config-
uration. The resulting 3D physical form, and the properties and locations of active
domains capable of binding to other proteins, give the protein its functional proper-
ties. It would make a lot of sense to take information about the structure of proteins
into account in modeling the interactions, but it is a different (hard) problem and
we do not have the time to go into that now.

Single proteins rarely achieve great deeds but working together in pathways they
may. A pathway is an abstraction describing a function produced by a set of players,
including proteins, co-operating to form a succession of reactions. There are three
types of pathways: Signaling pathways convey messages from the outside to the
regulatory apparatus of the cell. Metabolic pathways are series of chemical reactions
that take food and other molecules and transform them to be stored, to be used as
building blocks, or to extract energy. The third type, gene regulatory networks,
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governs gene activity and production of proteins.

The different kinds of pathways naturally interact; gene regulation transforms metabolism,
and signaling pathways change gene regulation, for instance. It may be sensible to
consider pathways as abstractions of context or condition-specific mechanisms at
work. They are formed of the set of (potential) interactions, interactome, of the
molecules in the cell, and modeling the potential interactions gives border condi-
tions for studying the pathways or discovering new ones.

2 Interaction data

Today we will focus on protein-protein interactions (PPI), which are the mecha-
nisms underlying much of the cellular function. Proteins bind to each other to form
complexes; interactions are the mechanisms by which the signaling pathways work;
proteins interact to activate or shut down other proteins, or to move other proteins
within the cell.

Another good reason for studying interaction data is that there are comprehensive,
albeit noisy, PPI data sets available as a result of developments of the measurement
techniques. They might be usable as one data source in other modeling tasks, such
as modeling of gene regulation or search of disease markers or drug targets. Lastly,
if the models are general enough, similar kinds of models could be used to model
interactions between other biological molecules, and in fact other kinds of relational
data as well, such as social networks, customer relationships, or the hypertexts of
the web.

The interactions are due to properties of the 3D protein molecule, where local do-

mains may be active in binding reactions. Here we will focus on the level of networks
of proteins and not try to model the fine structure or nature of the interaction. This
naturally loses a lot of information but makes the modeling task easier. Again, it
would make a lot of sense to take protein structure into account as well.

Yeast two-hybrid (Y2H) is a widely used method for measuring PPIs. It uses gene
expression measurements and gene regulatory machinery in an ingenious way. It uses
the particular property of transcription factors (TFs), activators of gene expression,
that they have two separate domains, of which both are necessary for activating the
gene. A binding domain is needed for the TF to bind to the binding sites in the
promoter region of the gene’s DNA, and an activator domain actually activates the
gene. For the Y2H measurements the TF is cut in two such that the two domains
end up in different subparts. Each subpart of the TF is then fused with one of the
two proteins whose interaction is to be measured. The subparts come together if the
two proteins interact, and then the transcription factor is functional and activates
the gene. Activity of the reporter gene then reveals interaction between the two
proteins; and based on the beginning of the course we know well how to measure
gene activity.

The measurements can be done in vivo, in the living thing, and can detect even
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transient bindings and, perhaps most importantly, can be done on a massive scale.
The main problem is noise; spurious interactions and blockings between the players
may tweak the results. And it must be kept in mind that Y2H only detects potential

interactions, not any specific set of interactions active in specific conditions or even
specific cells, and only pairwise interactions.

Another widely used technique is co-immunoprecipitation (coIP). There one protein,
“target” or “bait” is equipped with a tag, with which all targets can be pulled out
(precipitated) at a desired time. All other proteins and protein complexes that have
been bound to the target become pulled out at the same time. The molecules can
then be identified using 2D gels and mass spectrometry, for instance.

Advantages of this process are that it is more accurate, capable of measuring multi-
way interactions (with complexes), and all interactions occur in natural conditions
(instead of in the nucleus as in the yeast two-hybrid). A disadvantage is that when
large protein complexes become bound with the target, it is not known which pro-
tein(s) in the complex are primarily responsible for the binding. Moreover, MS-based
detection may miss low-abundance proteins.

It is slightly worrisome that overlap between the sets of PPIs found in different
studies has been very low. But that only highlights the need for tools to denoise the
data. Much of the noise probably stems from differences in the biological settings in
which the measurements were made, and differences in sample preparation. Some
comes from the measurement process, and statistical error models could be developed
for it, analogously to the error models in other high-throughput data. We will have
to skip those issues here; I am not aware of conclusive works on these topics. What
has been done is to integrate several data sources to computationally increase the
confidence in the links. We will return to that in the next section.

3 Denoising and untangling

PPI measurement data is very noisy and so far there are no completely satisfactory
noise models for them available. There are, however, several different kinds of mea-
surement methods, all revealing partly different aspects of interactions. Integrating
them gives a better picture than using only one of them. Another source of evidence
is the network nature: instead of considering each interaction separately we could
model the whole network.

3.1 Supervised link prediction

Let’s start by integrating measurement sources in a supervised setting: Assume that
for a subset of the edges, (i, j) ∈ EL, it is known whether an interaction exists,
eij = 1, or not, eij = 0. This knowledge can come from curated databases or from
some accurate measurement technique, and our task is to generalize this knowledge
to the other links, in the set E \ EL. Assume that for each edge we have a set
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of observations x = [x1, x2, . . .], which are PPI measurements made with different
techniques, or interactions inferred from co-expression or some other properties of
the genes. Using the Bayes rule, the posterior probability of an edge e existing,
taking into account the observations x, is

P (e = 1|x) =
P (x|e = 1)P (e = 1)

P (x|e = 1)P (e = 1) + P (x|e = 0)P (e = 0)

=
1

1 + exp(− log P (x|e=1)
P (x|e=0)

P (e=1)
P (e=0)

)
.

This is a sigmoid function (σ(u) = 1/(1 + exp(−u)) of the (log of the) likelihood
ratio P (x|e = 1)/P (x|e = 0) multiplied with the prior odds P (e = 1)P (e = 0). The
sigmoid function transforms the log odds, which may lie anywhere on the real axis,
to probabilities that are in [0, 1].

For computational simplicity we may want to make the simplifying “naive Bayes”
assumption that the different data sources are independent given e. Then the like-
lihoods factorize, and hence the likelihood ratio factorizes as well to

P (x|e = 1)

P (x|e = 0)
=

∏

k

P (xk|e = 1)

P (xk|e = 0)
. (1)

Given discrete-value data, these factors can be estimated from tabulated values in
the learning data where e is known. If the data is not discrete-valued it needs to
be discretized, or then parametric assumptions about P (xk, e|θ) can be made, and
maximum likelihood estimates of the parameters θ used.

This approach is useful because of its simplicity, but it has the obvious weakness
that the different measurements xk are obviously not independent. The model
can be made richer by inferring a richer dependency structure for x using more
flexible Bayes networks. The second weakness is that unless the measurement
data inherently is discrete-valued the discretization will lose information, which
could be avoided by using the continuous-valued data directly. Then it would
be sensible to use discriminative models; not to first do maximum likelihood es-
timation for P (x, e|θ), but instead directly maximize the conditional likelihood
P (e|x, θ). With certain simplifying assumptions this results in logistic regression

where P (e = 1|x) = 1/(1 + exp(−θTx − b)), and p(e = 0|x) = 1 − p(e = 1|x).
Alternatively, any other classification algorithm can of course be used.

3.2 Untangling with a factor graph

A lot based on [2].

So far we have not considered dependencies between the links at all, as a source of
information for inferring interactions from noisy measurement data. If we want to
study networks instead of all links separately, we implicitly assume that there are
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some underlying constraints on the link structure of the network, and it would be
good to take this implicit assumption into account in the models too.

So let’s take seriously the fact that the interactions form a graph. Assume a graph
with a fixed set of N vertices. The variables eij indicate edges as earlier, and
assume observations (measurements) for the edges, indexed in the same way as
the edges, xij . The observations may be multivariate (made with serveral different
methods), and some observations may be missing. For simplicity, let’s start with
scalar and binary-valued observations (edge is there or is not according to Y2H),
and full measurement matrix. For simplicity, the edges are assumed undirected, so
that eij = eji and xij = xji.

In order to do Bayesian inference about the structure of the graphs, we need to have
a prior over graphs. When treating each edge separately they were in effect assumed
independent (given parameters of the noise model) which, translated into a prior,
would imply a prior that factorizes into terms that only involve one edge each:

p(E, X|θ) ∝ p(X|E, θ)p(E) =
∏

p(xij|eij , θ)p(E) =
∏

p(xij |eij, θ)p(eij) .

The priors of the edges were assumed to be same for each edge, and furthermore
uniform, effectively resulting in maximum likelihood estimation for the parameters
θ of the edge noise.

Now we would like to introduce constraints on the networks. Inspired by the recent
studies on properties of degree distributions in random and social networks, it might
make sense to pose priors on the degree distribution and assume that all graphs
having the same degree distribution are equally likely.

Denote the degree of vertex i by di. The degree is a constraint on the edges, such
that

∑
j eij = di must hold. Now

P (E, X, D|θ) =
∏

P (xij |eij, θ)P (E, D) =
∏

P (xij|eij , θ)P (E, D) .

Determining the prior distribution over di by a non-negative potential fi(di), and
assuming graphs that have the same vertex degrees to be equiprobable, gives

P (E, D) ∝
∏

i

fi(di)I(di,
∑

j

eij) ,

Here the “∝”takes care of proper normalization of the potentials, and I makes sure
that the prior differs from zero only if the constraint that

∑
j eij = di holds. I(a, b) =

1 if a = b and 0 otherwise.

When the joint distribution factorizes into a product it can be conveniently repre-
sented as a factor graph; many inference algorithms, in particular the sum-product

algorithm also called loopy belief propagation are more easily derived for factor graphs
than for alternative formulations, Bayesian networks or Markov random fields. What
is also nice about factor graphs is that both directed (Bayesian networks) and undi-
rected (Markov random fields) graphical models can be easily converted to factor
graphs.
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In the factor graph there are two kinds of nodes: variables (denoted by circles or
simply their names, and factors denoted by filled squares. Each factor is connected
to all the variables on which it depends.

This factor graph is useful for inferring which edges underlying the noise in the
measurements are real, assuming the degree priors and the conditional probabilities
p(x|e) have sufficiently useful forms. Simple forms will be tried in the exercise
session. The remaining problem then is that the constraint

∑
j eij = di quickly

becomes impossibly hard to compute with for large graphs; there is a nice solution
to this in the original paper.

When the joint density is described as a factor graph, its margins can be computed
with the sum-product algorithm. In our case, the particularly interesting margins
are the p(eij) that tell whether an edge exists or not. This requires summing over
all variables except eij. In the current model, for two proteins the summation to get
e11 would be

P (e11|x11, x12, x22) =
∑

e12,e22,d1,d2

P (e11, e12, e22, d1, d2|x11, x12, x22) ∝

∑

e12,e22,d1,d2

P (x11|e11)I(d1, e11 + e12)f1(d1)P (x12|e12)I(d2, e12 + e22)f2(d2)p(x22|e22)

= P (x11|e11)
∑

d1,e12

I(d1, e11 +e12)f1(d1)P (x12|e12)
∑

d2,e22

I(d2, e12 +e22)f2(d2)p(x22|e22)

= P (x11|e11)
∑

d1,e12

I(d1, e11 + e12)f1(d1)P (x12|e12)µI2→e12
(e12)

= P (x11|e11)
∑

d1,e12

I(d1, e11 + e12)f1(d1)µe12→I1(e12)

= P (x11|e11)µI1→e11
(e11)

The two factors I(d1, . . .) and I(d2, . . .) have been denoted by I1 and I2, respectively.
Subsums and producs have been denoted by the µ on the way. They are called
messages passed between the neighboring nodes on the factor graph. The end result
is a non-normalized distribution which can be easily normalized by computing the
sum over the values of e11 and normalizing. It can now be checked easily that
when the same kinds of messages are progagated in the reverse direction, each node
receives enough information to compute its marginal.

In practice, this message passing can be taken care of by an inference engine, to
which we supply the factors.

The sum-product algorithm gives exact marginals for tree-structured (non-loopy)
graphs, after one pass forward and back, so that messages have passed from each
node to each other. For loopy graphs the exactly same algorithm can be used
as an approximate technique, by passing messages iteratively and hoping that the
messages converge.

So far the factor graph is a generative model for the PPI graph given priors on
the degree distributions, and it can be used to infer the margins for the variables
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eij , giving probabilities for the edges existing. What is even more interesting is to
assume that each interaction may come from any one of a set of graphs, and to
“untangle” the different graphs. The idea is that one of the graphs is the interesting
one and the others represent different kinds of observation noise.

Assuming the different tangled networks are independent but that they interact at
the level of producing the measurements, the joint distribution of all networks is

P (X, E1, D1, . . . , EH , DH) =
∏

ij

P (xij|e
1
ij, . . . , e

H
ij )

∏

h

P (Eh, Dh) ,

where the different networks have been indexed by superscripts.

For practical application with two networks we need to define and optimize the
(edge-specific) likelihoods Pij(xij |e

1
ij, e

2
ij), which are in the original paper parame-

tererized with Bernoulli distributions, which are network and data source-specific
but otherwise global (only one parameter per network and data source). The pa-
rameters were learned to maximize the likelihood of the noise model (without taking
into account the rest of the network). The other “parameters” to be optimized are
the potentials of the degree priors for each network. The potentials are set to reflect
the empirical degree distributions as closely as possible, by computing them with
kernel density estimates over a learning data set.

The remaining difficult question is how should the learning data set be constructed,
such that the model would learn to untangle the real interactions in one network
and measurement noise in the other. “Ground truth” needs to be known for some of
the data, such that in the parameter learning phase E1 will contain the true edges
and E2 the false positives.

The results could probably be improved a lot by taking into account known biases
towards high-abundance proteins etc, but we need to skip those developments here.

4 Latent structure in networks

In the previous section the PPI network was modeled by a very large set of latent
variables eij , one for each interaction. Modeling was made feasible by constraining
the solution space though priors on the degree distribution, which in turn constrain
the possible configurations of the latent variables eij . This is a very viable approach
if the constraints are realistic and the computation feasible.

We will next discuss a different kind of generative approach, where the goal is to
explain the interaction network with a much smaller set of latent variables, slightly
resembling the generators in model-based clustering. The generators are embedded
into a hierarchical Bayesian framework. It is too early to tell which of the approaches
is more useful, or more specifically, which kinds of applications each is good for.
A guess is that the untangling methods would be useful at least as preprocessing
methods for other algorithms, whereas the clustering-type networks, equipped with
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well-thought assumptions about the model structure, might be good for generating
hypotheses on new pathways and protein complexes.

Assume, for simplicity, that the interaction measurements are binary, xij ∈ {0, 1}.
Assume that there are K underlying groups or classes to which the proteins may
belong; to different groups in different situations. The potential for interactions
between two proteins is assumed to depend only on the groups they belong to; if i
belongs to group zi and j to group zj, p(xij) = η

xij
zi,zj(1 − ηzi,zj

)xij . The probability
of a protein i to belonging to the group z is θiz. The protein may belong to several
groups; the group is sampled independently from the multinomial distribution θi for
each interaction.

To allow a hierarchical Bayesian treatment, the protein-specific multinomials are
equipped with a conjugate prior (Dirichlet). In summary, the model assumes that
the protein-protein interactions have been generated as follows [1] (simplifying a
bit):

1. For each protein i, sample θi ∼ Dirichlet(α)

2. For each interaction i, j:

(a) Sample group of i: zij ∼ Multinomial(θi, 1)

(b) Sample group of j: z′ji ∼ Multinomial(θj , 1)

(c) Sample xij ∼ Bernoulli(ηzij ,z′
ji
)

The joint density given the hyperparameters here is

p({xij}, θ, z|α, η) = [
∏

i

p(θi|α)]
∏

ij

p(zij |θi)p(z′ji|θj)p(xij|zij , z
′
ji, ηij) .

To infer links in this model we would need to estimate the η and the hyperparame-
ters α (or assign priors and integrate over them), and to integrate the joint density
over the latent parameters z. This would give estimates for the posterior distri-
bution of the group memberships θ. Exact inference is intractable so variational
approximations were applied in the original paper.

An even simpler and hence computationally attractive alternative is to assume that
the proteins belong to groups or“communities”, which may be tighter or looser but if
two proteins belong to the same community they are more likely to interact. Again,
a protein may belong to different communities in different situations. This can be
formulated as the interactions belonging to groups, such that each interaction is
generated by choosing a group and then two proteins in the group to interact. The
generative process goes as follows [3]:

1. Sample the “prior probabilities” for choosing each group: θ ∼ Dirichlet(α)

2. For each group z, sample the membership distribution of proteins: mz ∼
Dirichlet(β)
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3. For each interaction:

(a) Sample group z ∼ Multinomial(θ, 1)

(b) Sample proteins for the interaction: i ∼ Multinomial(mz , 1); j ∼ Multinomial(mz , 1)

(c) Set xij to 1.

The nice property of this model is that inference on the z can be made very rapidly
using collapsed Gibbs sampling. It means that all parameters of the model are
integrated out, leaving only the latent memberships z, hyperparameterized by α and
β which govern how sharply the edges and nodes belong to the groups, respectively.

A Dirichlet process prior can be easily incorporated into the sampling, to avoid
having to explicitly choose the number of clusters. Let’s skip all details on the
sampling.

In conclusion, these generative models are expected to be useful for generating hy-
potheses on pathways and protein complexes, but it is too early to tell how useful.
Anyway, they have the attractive property that they explicate the underlying dis-
tributional assumptions. Now that the assumptions are explicit, alternatives can be
suggested, formulated, and the ability of the different models to explain a given data
set compared.

References

[1] Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing.
Mixed membership stochastic blockmodels. arXiv:0705.4485v1, 2007.

[2] Quaid D. Morris, Brendan J. Frey, and Christopher J. Paige. Denoising and
untangling graphs using degree priors. In NIPS 16. 2003.

[3] Janne Sinkkonen, Janne Aukia, and Samuel Kaski. Inferring vertex properties
from topology in large networks. In MLG’07, the 5th International Workshop

on Mining and Learning with Graphs. 2007.

9


