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1 Background

Genes are the hereditary units of biological organisms. They are encoded into DNA residing
in the chromosomes that are in the nucleus in eukaryotes (= cell contains a nucleus and other
subdivisions), and more freely floating within bacteria. Each chromosome essentially contains a
long DNA chain, consising of a sequence formed of four amino acids, A, C, G, and T. A gene is a
subsequence within this long sequence. The so-called coding region of a gene is formed of one or
more consecutive sequences (exons) possibly intervened with sequences not belonging to the gene
(introns). Before the start of the coding region there is a promoter region which plays a role in
starting and regulating the activity of the gene, and there may be numerous enhancer locations
scattered around in the vicinity of the gene. When suitable proteins are bound to the enhancers,
the activity of the gene is enhanced.

When genes are active a blueprint of their coding sequences is made and transferred out of the
nucleus to ribosomes where the protein is to be manufactured. The blueprint is made in the form
of a messenger molecule mRNA (for messenger RNA) which is essentially a copy of the coding
sequence. In the ribosomes the mRNA sequence is read three letters, a codon, at a time. Each
triplet corresponds to one out of 20 amino acids, which are building blocks of proteins. The amino
acids are put to a sequence in the order determined by the mRNA sequence, and then the sequence
folds into its natural low-energy configuration, a protein. Finally, several of these chains may form
a protein complex.

A fundamental property of DNA and RNA molecules is that they bind together if their sequences
are suitable. In DNA, letter A binds to T and letter C to G. In RNA the letters are slightly differ-
ent but the same principle applies. For instance, AGTC binds with TCAG. As is well known, the
chromosome is formed of a double-stranded DNA chain, meaning that there are two corresponding
chains bound together. Such tendency for binding is very useful in constructing measurement de-
vices: we can construct a probe, a short sequence specific to a certain gene or region of chromosome
and expose it to mRNA or DNA samples (processed suitably). If there are matching sequences
around, the probe is likely to bind to them.

The amount of mRNA molecules being produced of a certain gene depends on various molecules
being active and available around the chromosomal region of the gene. Most notably, there needs to
be a transcription initiator complex bound to the promoter region of the gene. A molecule, RNA
polymerase, belonging to this complex then does the actual encoding of the DNA into mRNA.
The rest of the proteins are called transcription factors (TF); they need to be bound to the DNA
sequence in suitable locations. There exist several types of TFs, and they bind to different kinds
of DNA sequences. The activity of the gene depends on the configuration of TFs that are bound
to the potential binding sites close to the gene.

All these proteins are products of some other genes being first transcribed and then translated.
All genes together form a dynamical system, a regulatory network, driven by its own dynamics and
signals coming from outside of the cell.

Activity of a gene additionally depends on the configuration of the chromosome; a region can be
silenced by adding certain compounds to the DNA molecule (process called methylation). Small
RNA molecules transcribed elsewhere in the genome may bind to the mRNA molecule before
it reaches a ribosome, stopping it from being translated into a protein. And finally, the resulting
aminoacid chain may be modified by additional reactions to become more or less active, or active in
a different way. All these and other mechanisms add to the complexity of the regulatory machinery
of the cell, and the list is not comprehensive.
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The (relative) amount of mRNA molecules stemming from a certain gene can be used as a measure
of the activity of the gene, or gene expression. The amount can be measured by designing a probe
sequence, that is, a sequence that is complementary to mRNA from the gene, and specific to that
gene. When mRNA solution is then washed over such probes, the mRNA specific to the probe
becomes bound or hybridized to the probes1. A breaktrough in functional genomics studies has
been the invention of gene expression microarrays, that is, arrays containing probes for a large
number of genes. Such arrays can be used to simultaneously measure expression of even tens of
thousands of genes.

There are two main varieties of gene expression microarrays. Spotted cDNA arrays are glass slides
on which a small amounts of solution containing probes are printed by physically dipping printing
tips into wells containing the solution, and then touching the slide. Each resulting drop contains
probes for a certain gene. The probes are sequences complementary to the whole mRNA of the
gene or parts of it.

The amount of mRNA bound to a specific probe type is read from the slide with the help of a
laser and fluorescent dyes. The mRNAs of a sample have been labeled by attaching fluorescent
dyes to them, and when a laser beam with a wavelength matching the dye is aimed at the slide,
the emitted intensity at each location reveals the number of mRNA molecules bound there.

To control for some of the numerous sources of noise, two samples, case and control, are typically
hybridized simultaneously on the slide. Each sample is labeled with a different dye, and the (log)
ratio of the intensities then reveals the relative amount of mRNA from the two samples.

The second type is oligonucleotide microarrays, where the probes (oligonucleotides = short, typi-
cally synthesized DNA or RNA sequences) are manufactured using litographic techniques directly
according to a desired target. The probes are shorter but can be designed to be specific, and the
step of having to (biologically) produce a collection (library) of cDNA needed in the cDNA arrays
can be skipped. The oligonucleotides can either be directly grown in desired quantities on an array,
or spotted on slides in the same way as the cDNA.

There are several significant sources of noise in the measurement process. Biological noise, stem-
ming from sampling the cells and the treatments the cells undergo, can only be avoided through
careful biological experimental design. Sample preparation is another; a large number of cells
need to be pooled to get enough mRNA, which means that inhomogeneities in sampling the cells
or synchronizing them will introduce additive noise. Laboratory practices may vary; for instance
non-uniformities in washing of the liquid over the slide may cause noise. The binding affinity, the
binding strength of the probes may vary, both over different slides in spotted cDNA microarrays
and over different genes in all arrays. The dyes may affect the binding likelihood, and different
dyes to different extents.

Some of the noise can be reduced though standardized laboratory practices and processes. For
the rest we need statistical noise models and/or normalizing preprocessing. If measurements have
been replicated (which naturally is a good idea), we can assume that variation between replicates is
noise, and making further assumptions such as that noise is independent across genes and samples,
maybe normally distributed (which may not be realistic, though), and even that the signal may
be shared by groups of genes, the underlying signal can be estimated together with its confidence
intervals.

Alternatively, if known amounts of certain mRNA samples have been injected into the samples,
a procedure called “spike-in”, deviations from the known value can be assumed to be due to
experiment-specific biases and scaling which can be estimated. Assuming the biases and scaling
are not specific to the spiked-in controls, they can be removed from the other genes as well.

If there are no or very few replications, more drastic assumptions need to be made to normalize the
expression measurements. For instance, the sample mean or some other statistcs of the distribution
of expression can be assumed unreliable and removed to make different chips more commensurable.

1technically, everything is first converted from RNA to DNA, called complementary DNA or cDNA
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Alternatively, the mean and variance of each gene may be assumed non-informative or reliable,
and removed removed by applying the z-tranformation.

In this course we will not go into more details of preprocessing or normalization, but we will return
to the problem of controlling for uninteresting variation when talking about differential expression.

For now, assume that the gene expression data matrix X is, after preprocessing, a reasonably good
representation of the activity of genes. The matrix consists of gene expression profiles xi for gene
i, such that xij is the expression level of gene i in treatment (microarray j).

2 Clustering and co-expression

Gene expression data has been used to infer functional relationships between the genes. If two
genes are expressed in the same way, that is co-expressed, it is more reasonable to believe that
their function is related than if they are expressed very differently or even independently. Co-
expression may be due to co-regulation, meaning that their activity is determined by (partly) the
same molecular mechanisms. Knowing the regulatory mechanisms would naturally be great but
based on co-expression only we unfortunately cannot tell whether the reason is co-regulation or
some outside factor that affects both of the co-expressed genes. The hypothesis of related function
or even of co-regulation naturally becomes the stronger the wider the range of conditions in which
the genes are co-expressed.

A simple way of assessing co-expression of genes i and j is to compute the correlation cij =
∑

k(xik−
µi)(xjk − µj)/σi/σj , where the means and variances are estimated over the set of conditions k. If
the correlation is higher than expected by chance, there is some relationship between the genes.
Given a reasonable number of conditions, significance could be estimated by a permutation test
for instance. Assess whether the observed cij is exceptionally high among the set of data obtained
by randomly permuting the indices k for one of the genes.

Correlation is of course only a crude measure of dependency; other estimates of mutual information
have been used as well.

The pairwise correlations between all gene pairs form a network, a graph where all gene pairs are
connected with links having the weight of their correlation. The graph only considers two-way
interactions and still for N genes there are N2 potential links. It would be nice to summarize.

2.1 Hierarchical clustering

Groups of more than one co-expressing gene could be found with the following algorithm: Take
the two genes with the highest correlation in their expression, say i and j, and decide that they
are co-expressed at the level cij . This is the first group or cluster consisting of genes i and j. Then
continue by again adding together the two genes having the highest correlation, or a gene and a
cluster if their correlation is the highest; defining the correlation between a gene and a cluster to be
the minimum of all pairwise correlations ascertains that if the process is stopped at a certain level,
all genes within any cluster have co-expression higher than the stopping level. Then this algorithm
is continued, at each step adding together two genes, a gene and a cluster, or two clusters, until
only one cluster remains.

The process can be visualized as a tree, a dendrogram [see the net for figures...], where the pro-
gressive branches correspond to the clusters and the leaves in the bottom are the genes. The tree
can be cut at a desired level to get a fixed set of clusters.

This algorithm is called hierarchical clustering. In general, clustering is the task of finding groups
of mutually similar data items, such that the different groups are relatively dissimilar. The task
requires choosing a measure for similarity, and possibly also some other parameters that govern
what kinds of clusters are to be sought. We used correlation as the distance (actually similarity)
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measure, choosing to group together genes with correlated expression. Additionally we chose that
clusters need to be relatively compact, by requiring all pairs of genes within a cluster to have
a high correlation, instead of defining the correlation between a cluster and a gene to be the
highest correlation among the cluster (resulting in so-called single-link clustering, instead of the
complete-link clustering here).

Some of the main pluses of hierarchical clustering, among the numerous clustering algorithms, are
that both the algorithm and the resulting dendrogram visualization are intuitively understandable.
Some minuses are that the result may be sensitive to noise, and that being defined as an algorithm
instead of a well-defined objective, deep down its functioning may be hard to predict or control.
But it functions well in its task of grouping together similar data items and visualizing the groups.

2.2 K-means and model-based clustering

An alternative, equally traditional clustering method is to choose the number of clusters and the
distance measure, and then search for a set of clusters that are maximally homogeneous in terms
of that distance measure. In K-means the clusters are defined by a set of cluster prototypes or
centroids, such that all samples belong to the cluster having the closest centroid, in terms of the
chosen distance measure. Clusters are homogeneous or contain similar samples, if the distance
from each sample to its cluster centroid is minimal. Hence, the cost function to be minimized is

∑

i

min
z(i)

||xi − µz||
2 =

∑

i

||xi − µz(i)||
2 (1)

where z(i) is the index of the closest centroid.

The cost function can be minimized by alternating two optimization steps: First compute z(i) for
each i, and then minimize (1) for the fixed set of z’s, yielding, by taking the root of the gradient,

µk =

∑
z(i)=k xi∑
z(i)=k 1

.

K-means algorithm is (relatively) fast and intuitively readily understandable, and it is easy to
interpret the results since the cost function has been designed to directly capture the intuition of
clusters as mutually similar sets of samples. What is less pleasing is that the number of clusters
needs to be chosen beforehand, and only more or less heuristic methods are available for aiding in
that choice. A feature of K-means is that it favors, by its nature of minimizing the distance from
cluster centroids, clusters that are spherical according to the given distance measure. This may or
may not be desirable.

A very closely related alternative is to assume that the data points have been generated by a set
of K generators, each generating data according to a specific distribution, typically Gaussian. The
parameters of the distributions are unknown, and have to be estimated from the data. Assuming
normally distributed generators with the same variance in each treatment, the kth generator pro-
duces data according to the distribution pk(x|µk, σk) ∼ N(x|µk, σkI) =

∏
j N(xj |µkj , σk). The

whole mixture model produces the distribution

p(x|θ) =
∑

k

pkp(x|µk, σk) ,

where θ is a shorthand notation meaning all parameters of the model.

The model can be interpreted to have two sets of unknowns, first the parameters µ and σ, and
secondly the knowledge of which generator generated each data point. The latter can be interpreted
as latent variables, a discrete variable for each data point, which moreover can be considered as
missing data. The EM (Expectation Maximization) algorithm is a widely used tool for fitting
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models where data is missing. It maximizes the likelihood of data D, p(D|θ) = Ez[p(D, z|θ)],
where D = {xi} and the z contains all the zi.

In the first, E-step, the distribution of latent variables given θ (the old, fixed value) is computed.
Here

P (zi = k|xi, θ) =
P (zi = k,xi|θ)

p(xi|θ)
=

pkP (xi|µk, σk)

P (xi|θ)
.

In the second, M-step, the (probabilistic) assigments of samples to clusters are fixed to the values
p(zi = k|xi, θ) obtained in the E-step, and the (log) likelihood is maximized with respect to the
parameters pk, µk and σk. Now the cluster assignments do not depend on the parameters any
more, and the generating distribution of each cluster can be estimated separately. For normal
distributions, the formula for the mean parameters,

µk =

∑
i p(zi = k|xi, θ)xi∑
i p(zi = k|xi, θ)

,

is very close to that of K-means; the difference is that the assigments of samples to clusters in
K-means are discrete.

A main advantage of the mixture model compared to the K-means is that while above the cluster
assignments and adaptation formulas were essentially the same, the mixture model can be readily
generalized to other kinds of distributions. For instance, the covariance matrix could take on more
flexible forms.

A second advantage is that the mixture is now a well-defined distribution, and assuming it is a
good model for data, the Bayesian machinery can be used for model selection: choosing the number
of clusters or generator distributions. Alternatively, priors can be assigned for a full-Bayesian
treatment. We will not discuss these extensions longer here.

2.3 Biclustering

Clustering models group data into groups that are similar over all treatments. This is sensible
assuming (i) the treatments form a carefully chosen set that reflects the kinds of functions we are
interested in, or (ii) the goal is to separate genes according to differences in their general regulatory
mechanisms; then it makes sense simply to collect as varying set of treatments as possible.

Genes may, however, have different functions in different situations, and their regulation may
be context-specific as well, meaning that different regulatory factors may be at work in different
treatments. Biclustering is an extension of clustering where the clustering may be different at
different treatments; a cluster may be “active” only in a subset of the conditions. This implies
that a gene may belong to different clusters in different treatments; note that this is very different
from the “smooth clustering” by mixture models where a gene is assumed to belong to exactly one
cluster, we just do not know which one.

Again, there are several different models. We will focus on so-called plaid models [1], which make
the additional assumption that data contains an additive mixture of contributions from several
clusters. That is, part of the expression of a gene may be due to one regulatory mechanism
and part from another. Alternatively, this can be motivated more abstractly as explaining the
expression with a set of latent generators, each hopefully corresponding to some as-of-yet unknown
cellular function.

Assume that the expression level xij of gene i in treatment j consists of background activity µ0

plus a contribution θijk if the gene i belongs to the bicluster k and if the bicluster is active in the
treatment k. The whole model is

xij = µ0 +
∑

k

θijkgkickj + ε .
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The activity of the bicluster is modeled by a set of binary-valued variables ckj = 1 if cluster k is
active in treatment j and ckj = 0 otherwise. The binary variables gki analogously govern whether
gene i belongs to cluster k, and ε is normally distributed noise.

The profile of activity of the cluster, given by the θijk may depend on the gene or be different for
each treatment, or both. This can be formulated as

θijk = µk + αik + βjk ,

where one or both of the variables α and β can be set to zero. The full model is naturally more
flexible but also more prone to overfitting.

The original solution to the plaid model was greedy optimization, to successively fit one cluster at
a time to maximize the likelihood of the residual remaining from the earlier clusters. The fitting
criterion was maximum likelihood, solved by iteratively optimizing one set of parameters at a time.
Another proposed solution is full-Bayesian treatment with Gibbs sampling, with computationally
convenient (conjugate) priors for the paramaters [2]. The solution was presented only for binarized
gene expression data, however.

2.4 Evaluation and use of clusterings

There exist numerous clustering algorithms each having their merits and dismerits in modeling
co-expression. The choice of an algorithm is hard both because many have been introduced heuris-
tically, or from different principles, and it is then hard to compare them even in principle. Moreover,
the actual problem of modeling co-expression is ill-posed unless more assumptions are made and
more data sets are combined. Which aspects of co-expression are important and why specifically
would we want to group the genes?

One natural motivation is to model co-expression as merely a proxy to ultimately building mech-
anistic regulatory models, to be used while we cannot use suitable models for that or do not have
the suitable data. Another sensible motivation is the get some intuitive understanding of a new
data set or data compendium before further studies. Both are ok but it is good to keep in mind
that clustering merely groups genes and does not do miracles.

Irrespective of how and for what the clusters are to be used, it would be crucial to know whether
the extracted clusters are real, that is, whether they are properties of the data or artifacts produced
by the chosen algorithm. [Unfortunately even this problem is ill-posed, since the (clustering) model
gives us our view to the data...]

If we could make a reasonable assumption of what the data should be like if there were no clusters,
for instance that it is uniformly distributed, we could measure which model (clusters or no clusters)
better fits the data. Unfortunately for high-dimensional real-valued, smallish data sets it is hard
to come up with a satisfying definition.

Model-based clusterings can in principle be analyzed with standard probabilistic (Bayesian) tech-
niques, producing confidence intervals. The problem is that we do not usually really think that
the data has been generated as a mixture of Gaussians (that is, we know our prior assumptions
are wrong), and all such results are conditional on our modeling assumptions.

Alternatively, we can assume that real clusters are robust to small variations in the data, and mea-
sure the robustness by randomly re-sampling the data several times and computing clusters from
each sample. A problem is that not all interesting clusters such as outlier clusters are necessarily
stable in this sense.

Or then we can measure how well the obtained clustering corresponds to known functional clas-
sification of the genes, or some other pre-defined information. The obvious problem with this
approach is that we are probably applying the clustering to discover something new, instead of
replicating the already known information. The clustering will bring new information about new,
so-far unlabeled data, though.
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Finally, we could generate data where we know the ground truth, run all clustering algorithms on
the data and choose the best. The best algorithm would then be run on the gene expression data.
The obvious problem here is that while the algorithm was good on the first data there is no general
reason why it should be good for the new data as well.

In summary, the clustering solution can be evaluated or validated with several methods, of which
none is completely satisfactory. Maybe the best advice is to evaluate using several criteria to make
sure the result is sensible, and accept that clustering is an exploratory method meant primarily
for producing understandable summaries in data. The summaries are meant for giving sparks for
further modeling steps.

3 Differential expression

If it is not possible to remove all uninteresting sources of variation, they can be controlled by
making paired measurements where in each pair the uninteresting factors are identical, and only
the interesting feature varies. The measurement noise of spotted cDNA arrays stemming from
variation of the spots, differenes in binding affinity of the probes, etc. is customarily controlled
in this manner. Two samples are hybridized on the same array at the same time, the “case” such
as disease tissue and its control (“normal” tissue). The two samples are labeled with different
fluorescent dyes, and can be read separately with laser beams having different wavelengths.

In oligonucleotide arrays the measurement process has less noise and it makes sense to measure one
sample at a time. But whichever method is used, the sample preparation noise and biological noise
remains and needs to be controlled. A simple way is to measure differential expression, determine
which genes are up- or down-regulated in the case or treatment, compared to a control sample.

We will consider inferring differential expression from a single array with two measurements. Please
read T. Jaakkola’s lecture notes from the course “Computational functional genomics”, lecture 8,
available at http://web.mit.edu/6.874/www/lectures/lecture-8.pdf.
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