7 Image Analysis in
Neuroinformatics

Removal of Artifacts

Pavan Ramkumar Xavier Minguez Bernal




Table of contents

Characterization of Arfitacts
» Statistics
* Diferent types

Matrix Representation of Images
Images
Transforms
Convolutions

Denoising Techniques
Mutliframe Averaging
Spatial convolutions and order statistics
Frequency domain filters
Optimal filtering: Wiener



Characterization of Arfitacts




Characterization of Artifacts |

l ¥ Random noise

p, ()

‘Mean

co

n, = E[n] = f np,(n) én

-Variance

o’y = E[m— n?|= f_ (m— my)*py(n) 61

o’, = E|n*| - E[n]?




Characterization of Artifacts Il

Image
gx,y) =f(x,y) +n(xy)

ST N

Noise
Detected image Image frame (typically additive)



Characterization of Artifacts lll

Statistical expectation

* Estimated mean ( M observations)
1 M
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* Autocorrelation function
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Characterization of Artifacts IV

Stationarity in strict sense

Statistics not affected by a shift in time or space

Stationarity in wide sense

Constant mean and autocorrelation depends only
upon the shift in time or space

pp(k) = py
re(ty,ty +7) = 16(7)

Tf(xllxl + ad,vV, V1 +ﬁ) = rf(alﬁ)



Characterization of Artifacts V

Ergodicity

* Temporal statistics independent of the sample
observed

» Statistics may be computed from a single observation

Original realization of a stationary
and ergodic pro
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Gaussian noise |

Completely specified by the mean and variance
Important |:> central limit teorem

Termal noise I:> electronic components
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Gaussian noise |l




Uniform distributed noise

» Quantization noise
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Laplacian distributed noise

(c

* Errors in linear prediction

0.8r




Poisson noise

Quantum noise, photon noise
Signal dependant

Systems in low-light conditions

p(k) =—e™#

Degraded image

L
go(m,n)

p(go(m,n)|f(m,n),2) =



Speckle noise

Caused by roughness surface
Signal depedant

Rayleigh distributed




Other types of noise and artifact

Structured noise

* Power line interference
* Grid artifact |:> parallel periodic strips

* Surgical implants

Physiological interference
* Effect of breathing

* Cardiovascular activity

Others

* Salt and pepper noise
* Shot noise
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Matrix Representation of Images

F = {F(m,n),m =0...M-l,n+ ON-I}

Non-negativity and Upperbound Constraint
Fmin <= F(m,n) <= Fmax

Finite energy
€F = 22F2(m,n) <= Emax

Smoothness
F(m,n) — mean(Fnbd(m,n)) <= S



Vectorization

Useful representation prior to application of
transformation, estimation, optimization

F=1I2
3 4]

Row ordering
f=[1234]
Column ordering
f=[1324]

Fis MxN, fis MNxI



Some definitions
Energy € = fTf = Tr[ffT]
Mean p = E[f]
Covariance 6 = E[(f - p)(f — W)T] = E[fT] — uuT

Auto Correlation or scatter matrix

O = E[ffT]
For 2 images f,g we can define:

Uncorrelatedness, Orthogonality, Statistical
Independence (look up last week’s slides)



Matrix Representation of Transforms |

| D Transforms

A signal may be represented as a linear
combination of orthogonal basis functions

fm:i&wm

to+T

j dx(t)g* (t)dt =1 k =1,0, otherwise

to+T

ac= [ f(t)ge* (1)
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Matrix Representation of Transforms |l

| D Transforms

The set {ak} represents a ‘Transform space’

If a ID signal is sampled at N points, the

transform may be represented as matrix
multiplication

F =Lf
f=L*f

L(k,n) = @«(n)



Matrix Representation of Transforms Il

2D Transforms

For an NxN image f(m,n) and its transform
F(k,1) are related by
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d(m,n,k,l) is the forward kernel and
WY(m,n,k,l) is the inverse kernel



2D Transforms |

If d(m,n,k,1) = Pl (m,n) d2(k,l), d is said to be
separable

If d1(m,n) = d2(m,n), it is said to be symmetric
If ¢ is symmetric and separable, the 2D

transform can be computed as 2 |ID transforms
sequentially

F(ml) = % f (m,n)g(n,l)

F(k,l) = Nz_ll F.(m,1)g(m, k)



2D Transforms ||

Example of separable, symmetric kernels:
2D DFT

¢(m,n,k,l) :exp_—jzﬁﬂ(mk+nl)}

¢(m,n,k,l)=exp —j%mk}exp{—j%nl}

f is the NxN image, W is a symmetric NxN
matrix and F is the NxN 2D DFT

W(k,m) = exp[—j %Tkm}



Matrix Representation of Convolutions |

| D Convolution with Causal lIR filter

g(n) =" 1 (a)h(n-a)

Can be represented in matrix form as

g0\ O 0 0 (0
/ggn\ /hgn (U 9\/@\
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Matrix Representation of Convolutions |

| D Convolution with Non-Causal FIR filter

g(n):i f(a+n—%)h(%—a)

Can be represented in matrix form as
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Matrix Representation of Convolutions |l

Periodic or circular convolution for finite, periodic f(n)
and h(n)

g(n) = Zn: f (a)h([n—a]mod N)

Circular convolution of 2 signals of duration N is of
length N (obtained also by IDFT of product of 2 DFTs)

Linear convolution of 2 signals of duration N is of length
2N-|

Circular and linear convolution can be made identical by
zero padding the signals to length 2N-|



Matrix Representation of Convolutions |V

Circular convolution in matrix form

g(0) h(0)  h(N-1) - h(2) k(1) f(0)
g(1) JTCVR TR TE)N 1) F)
ov-2| (-2 hv-1 " RO V-1 ||{FVN-2)

(N-1) A(N-1) h(N-2) - h(1) h(0) / \fF(N-1)
This is called a circulant matrix.

Important property: Diagonalized by DFT



2D Convolution |

2D LS| convolution

Z
=

g(mn)=» » f(a,fh(m-a,n-p)
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2D Circular convolution
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2D Convolution ||

Matrix representation

g =hf
Representation of h as block circulant
matrix

Insert eqn 3.102 (pg.221)
Submatrices h_, are given by
Insert eqn. 3.103 (pg. 221)

Each h_, is circulant and h is block
circulant



Denoising Techniques




Mutliframe Averaging |

Gated ensemble averaging

Successive frames which are gated (phase locked) to a
‘pPhysiological state’ in a recurring cycle are averaged to
remove additive noise

‘Recurring physiological state’ is not very clearly defined
as far as the brain is concerned!

g=f+n

Law of large numbers suggests

o(g) = I/sqrt(N) o(n)



Multiframe Averaging ||

5 zero mean Gaussian noise (0=5) frames were
added to an anatomical image and averaged

Raw image Gaussian noise Multiframe

Raw image Gaussian noised image Multiframe avgd. Image
(MSE = 24.87) (MSE = 4.85)



Spatial Domain Local Statistics Filters

Cannot rely on ensemble of images to obtain properties
of the image

A (spatially) moving window is used to gather local
statistics

If the statistic is a linear combination of intensities in
the nbd, it can be expressed as a LS| convolution

output image

D nage
B g
E T —
e
|
[
FIGURE 3.13

Moving-window filtering of an image. The size of the moving window intﬁf
illustration is 5 x 5 pixels. Statistics computed by using the pixels Wiuﬂ“ﬂ he.
window are applied to the pixel at the same location in the output image
The moving window is shown for two pixel locations marked # and 0;_



Mean Filter

A local neighbourhood of each pixel is considered as an
ensemble

Each pixel is substituted by its local spatial average

Raw image Mean filter: 3x3

50 100 150 200 250 50 100 150 200 250

Raw image Gaussian noised image Mean filtered image (MSE =
(MSE = 99.03) 80.09)

Oversmoothing may be avoided by selectively applying to ‘non edge’ pixels. This
however, makes the filter non linear



Median Filter

Each pixel is replaced by the median of its local
neighborhood

Uselful to remove outliers in the histogram (eg. Impulse
noise)

Raw image Salt and pepper noise corrupted image Median filtered image of SnP noise

50 100 150 200 250

50 100 150 200 250

Raw image S&P noised image (MSE = Median filtered image (MSE
2903.1) =.2)9



Order Statistics Filters

A class of non linear filters

The pixels in the nbd are ordered by intensity

i-th entry is the output of the i-th order statistic filter
Eg. Ist entry is the min-filter

2"d entry is the max-filter

Middle entry is the median-filter

a trimmed mean filter: o percent of the top and bottom
of the list are rejected and the mean of the rest is
chosen



Frequency-domain filters

Take advantage using the frequency domain

¥

Most image vary slowly and smootly across space

¥

Energy concentrated in small region around (k,[)=0

¥

Remove high-frecuency components




Procedure

2D Fourier transform of the image, padding the image with 0
* F(k,])

* Design or select the appropiate 2D filter transfer function
* H(k,))

Obtain the filtered image in Fourier Domain (center or fold)
* G(I,D)=H(I,DF(I,I)

Inverse Fourier Fourier Transform of G(k,l), (unfold)
* G(m,n)

Trim the resulting image g(m,n), if it was zero-padded

M @ M’ N N N

TEECEL



|deal lowpass filter

D0 =20

1, D(k,l) < Dy
0, otherwise

Hw,v) = D(k, 1) = /K2 + I2




Butterworth lowpass filter

n=5 D0 =20

D(k 1) = k% + IZ

H(k 1) =

1
Dﬂ — D(k,l) — \/_E

[D(k D"

Butterworth Mask




Removal of high-frequency noise

Raw imege Ideal Filtered FFT Ideal Filtered image

10 20 30 40 50 60 10 20 30 40 50 60

FFT of rawimage Butterworth Filtered FFT Butterworth Filtered image




Removal of peridodic artifacts

Raw image FFT of rawimege Ideal Fitered image

50 100 150 200 250 50 100 150 200 250 50 100 150 200 250

. Butterworth Filtered image
Raw imege Butterworth Filtered FFT




Optimal filtering: Wiener filtering

—

Aim > minimize the mean square error

n
l g=f+n 2 y_f=nig
> h >

Reference

d=f




Wiener filtering: equations |

§ = E{e(m)*} = E{|(d - y)|*} = E{|(f - )I*}
§=E(|(f - h"g)|") = P+ h"E{gg"}h— " E(f g™} - E{gf"}h
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Wiener filtering: equations |

—

_F _ H, _ 1, -1 > H _
y_f_hﬂl’t g_P RH g y:fbﬂﬂk:hnpt g:Rf(Rf+Rn) 19
Mse: Emin = Pf— PYR, P
Fourier
domain: F'(_lTi) _ 1 G(k l)
' 1+ Sk '
St




Wiener filtering: more aplications

=

. . q
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Reterencia d(n)=s(n)+h(m)*w(n) s (n)
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ing

ise with Wiener filteri

Removal of no

Gaussian noise

Raw image

150 200 250

100

150 200 250 Wiener

100




End of the presentation

Questions round




