Image Coding and Data Compression

Part 1 : Image Coding

Boyana Nenova Jayaprakash Rajasekharan

The Need for Coding and Compression

- Film technology is outdated and cumbersome.
- Medical Images are Digital.
- High Spatial Resolution and Fine grey level quantization are required for medical images.
- Volumetric data obtained by CT or MRI could be of size 512x512x64. At 16 bits/voxel, 32 MB of storage space is required.
- Digital Images may be compressed via image coding and data compression techniques.

Information Theory

- Entropy is a measure of uncertainty or randomness in an image.
- Higher entropy gives more information about the image.

Higher Correlation between data
 Higher Redundancy
 Lesser Entropy
 Lesser Information

Redundancy

- Code Redundancy
 - All pixel values do not occur with equal probability
- Spatial Redundancy
 - Adjacent pixels are correlated
- Psychovisual Redundancy
 - Precise numbers are not needed to observe important features in the image
- Reduce redundancy through coding for better compression of images.

Lossless vs Lossy Compression

- Lossless Coding
 - Original image can be recovered from the coded and compressed image without any loss in information.
- Lossy Coding
 - Original data cannot be recovered with complete numerical accuracy from the compressed image.
- Numerically lossy coding may be perceptually or diagnostically lossless.

Distortion Measure

• Let us define a error Image as

e(m,n) = g(m,n) - f(m,n)

• RMS value of the error

$$\sqrt{\frac{1}{N^2} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} \left[g(m, n) - f(m, n) \right]^2}$$

• SNR is defined as

$$\frac{\sum_{m=0}^{N-1} \sum_{n=0}^{N-1} g^2(m,n)}{\sum_{m=0}^{N-1} \sum_{n=0}^{N-1} e^2(m,n)}$$

Fundamental Concepts of Coding

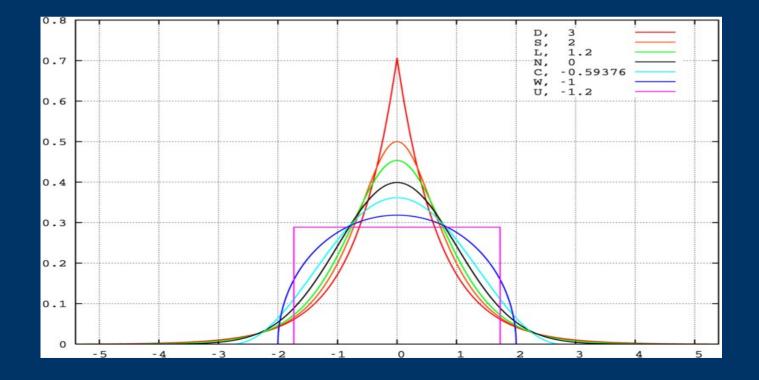
- Alphabet is a set of pre-defined symbols.
- Word is a finite sequence of symbols from an alphabet.
- Code is a mapping of words from a source alphabet into words of code alphabet.
- A code is said to be distinct if each code word is distinguishable from other code words.

Fundamental Concepts of Coding

- A distinct code is uniquely decodable if every code is identifiable in a sequence of code words.
- A uniquely decodable code must be decodable on a word to word basis.
- If no code word is a prefix of another, then it is also instantaneously decodable.
- A code is optimal if it is instantaneously decodable and has minimum average length for a given pdf.

Direct Source Coding

- Coding method is directly applied to the pixel values generated by the source.
- Patterns of limited variation and high correlation
- Usually images have non-uniform pdf.



Huffman Coding

- Some pixel values have higher probabilities than other pixel values.
- Use short code words for pixels with high probabilities of occurrence.
- Code words are variable in length.
- Average code word lengths are lesser than that provided by fixed length codes.
- Codes are uniquely and instantaneously decodable.

Huffman Coding

- Prior knowledge of pdf is assumed.
- Huffman code is optimal only for a given source pdf and has to be redesigned for changes in pdf.
- Huffman coding yields best results for highly non-uniform or concentrated pdf.
- Without prior decorrelation, the code word length is increasing for sources with several symbols.

Huffman Coding - Example

W	P(w _i)	С	v	P(v _i)		U	P(u _i)		x	P(x _i)	
w _l	0.5	1	\mathbf{v}_{l}	0.5	1	u _l	0.5	1	x _l	0.5	0
w ₂	0.2	01	v ₂	0.2	01	u ₂	0.3	00 -	x ₂	0.5	1
w ₃	0.15	001	· v ₃	0.15	000 -	u ₃	0.2	01			
w4	0.1	0000 -	v ₄	0.15	1 01 000 - 001						
		0001									

Run-length Coding

- Images with high levels of correlation contain strings of repeated values of the same grey level.
- Run-length coding can be done as follows Row 1: (1,10),(2,1),(3,1),(2,2),(1,1),(2,1) Row 2: (0,1),(1,10),(2,2),(3,1),(4,1),(5,1) Row 3: (1,1),(0,3),(1,8),(2,2),(4,1),(6,1)

Run-length Coding

- Best suited for bi-level images.
- Images with fine details, intricate texture and high resolution quantization with large numbers of bits per pixel may actually lead to data expansion.
- Can be advantageously applied to bit planes of grey level and colour images.
- Errors in run length can cause severe degradation of the reconstructed image due to loss of pixel position.

Arithmetic Coding

- Represent a string of input symbols by their individual P_l and cumulative probabilities P_l .
- Source string is represented by code point C_k and an interval A_k.
- A new symbol is encoded as follows $A_{k+1} = A_k p_l$ and the new code point is defined as $C_{k+1} = C_k + A_k P_l$
- Each symbol need not have a unique code word as in Huffman coding.

Lempel-Ziv Coding

- Probabilities of source symbols not known a priori.
- Pass symbols from source into sub strings or words.
- Map the sub strings of variable length into uniquely decipherable codes of fixed length.
- Lempel- Ziv coding may be viewed as a search through a fixed size variable content dictionary for words that match the current string.
- Lempel-Ziv-Welch (LZW) Coding.

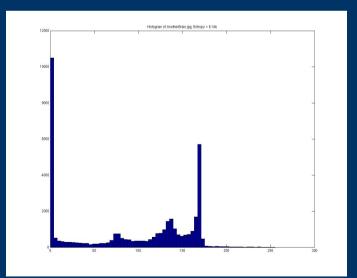
Contour Coding

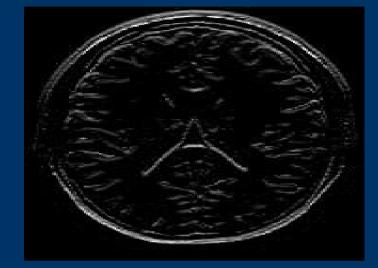
- Pixels of same grey levels occur in 2D contours or patterns in the image.
- Information related to all such contours may be used to encode the image.
- For each contour, encode co-ordinates of starting point, grey levels and sequence of steps needed to trace the contour.
- A consistent rule is required for repeatable tracing of contours.

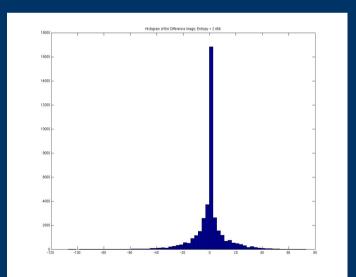
Decorrelation

- Decorrelation is a procedure to remove or reduce redundancy or correlation between pixels.
- Commonly used decorrelation techniques are
 - Differentiation
 - Transformation to another domain
 - Model based prediction
 - Interpolation
- Decorrelated data needs to be encoded and transmitted.
- Coding requirements are significantly reduced.

Decorrelation







Entropy = 6.14b

Entropy = 2.48b

Transform Coding

- Orthogonal Transforms Rotation of co-ordinate system in signal space.
- Purpose of the transform Decorrelation and Energy Concentration.
- We have already seen
 - DFT
 - WHT
- We will now see
 - Discrete Cosine Transform (DCT)
 - Karhunen Loeve Transform (KLT)

DCT

• DCT is a modification of DFT

$$F(k,l) = \frac{a(k,l)}{N} \sum_{m=0}^{N-1} \sum_{n=0}^{N-1} f(m,n) \cos\left[\frac{\pi m}{N}(2k+1)\right] \cos\left[\frac{\pi n}{N}(2l+1)\right]$$

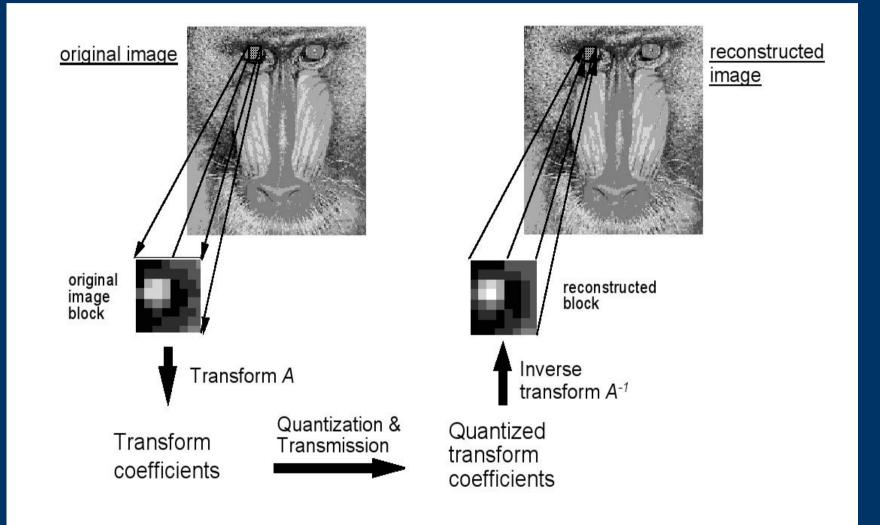
$$k = 0, 1, 2, \dots, N-1$$

$$l = 0, 1, 2, \dots, N-1$$

$$a(k, l) = \begin{vmatrix} 1 & \text{if } (k, l) = (0, 0) \\ \frac{1}{2} & \text{otherwise} \end{vmatrix}$$

• Inverse DCT is given by

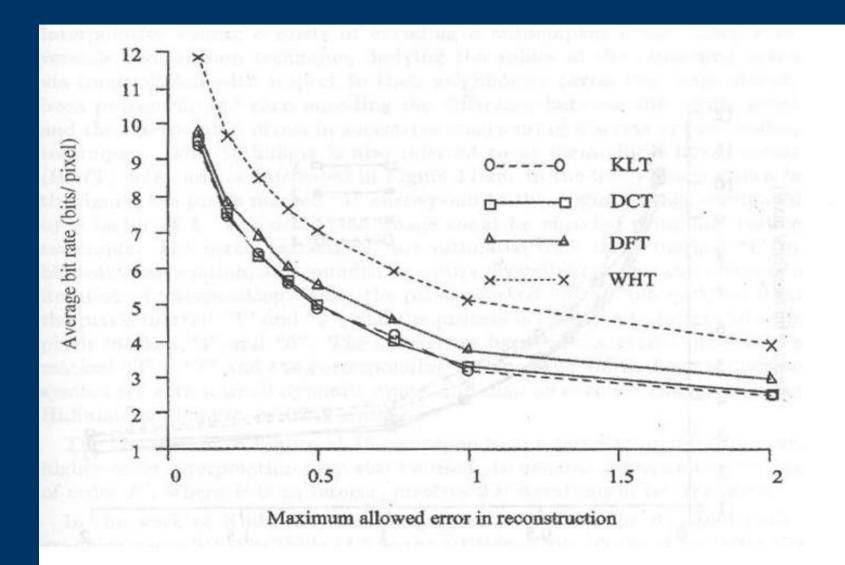
$$f(m,n) = \frac{1}{N} \sum_{k=0}^{N-1} \sum_{l=0}^{N-1} a(k,l) F(k,l) \cos\left[\frac{\pi m}{N}(2k+1)\right] \cos\left[\frac{\pi n}{N}(2l+1)\right]$$
$$m = 0,1,2,\dots,N-1 \qquad n = 0,1,2,\dots,N-1$$



KLT

- Principal Component Transform or Hotelling Transform or Eigenvector Transform.
- Based on statistical properties of the image.
- KLT yields decorrelated transform coefficients (Covariance matrix is diagonal).
- Basis functions are the eigenvectors of the input covariance matrix.
- KLT achieves optimum energy concentration.

Comparison of Transforms



Encoding Transform Coefficients

- Transform coefficients are quantized for encoding irrespective of the transform used.
- Quantization errors are introduced.
- Maximum error limit must be derived so that pixels exceeding this limit are encoded separately.
- Use variable length encoding and bit allocation depending on pdf of transform coefficients

Interpolative Coding

- Sub sample the image (Decimation).
- Interpolate the remaining pixels through some suitable interpolation techniques.
- Compute the differences between the actual and interpolated pixels.
- Encode the difference using discrete symbol coding techniques.
- Differences can modelled using Laplacian pdf.
- Interpolative coding of order 2^P

- Correlation between adjacent samples spatially or temporally – statistical redundancy.
- Sample of a signal may be predicted from previous samples.
- Linear Prediction Model for Images

 $\tilde{f}(m,n) = -\sum_{p} \sum_{q} a(p,q) f(m-p,n-q)$ where a(p,q) are the 2D LP model coefficients.

• Prediction Error and MSE can be calculated as

$$e(m,n) = f(m,n) - \tilde{f}(m,n) \qquad \epsilon^2 = E\left[e^2(m,n)\right]$$

- Error image e(m,n) has more concentrated pdf which leads t better compression.
- Derive Prediction Coefficients 2D normal or Yule-Walker equations.

$$\phi_{f}(r,s) + \sum_{p} \sum_{q} a(p,q) \phi_{f}(r-p,s-q) = \begin{cases} 0 & (r,s) \in ROS \\ \epsilon^{2} & (r,s) = (0,0) \end{cases}$$

where ϕ_f is the ACF and ROS is the region of support.

• Prediction error can be encoded using any discrete symbol coding method.

- Multichannel Linear Prediction is a combination of 1D and 2D Linear Prediction.
- Certain number of rows of the image can be seen as a collection of multichannel signals.
- Prediction coefficient matrices can be calculated using Levinson-Wiggins-Robinson algorithm or directly from the image through Burg algorithm.
- For error free reconstruction at the decoder, the prediction coefficients have to be recomputed.

- Adaptive 2D recursive Least Squares Prediction.
- LP model with constant prediction coefficients assume stationarity of image generating processes.
- Assumption is hardly valid for real world images.
- To overcome this problem,
 - Block computation of prediction coefficients
 - Adapt coefficients recursively to changing statistical characteristics of the image
 - Minimize the weighted sum of prediction errors in the least squares sense.

Quick Recap

- Lossless data compression is desirable in medical images.
- Information theoretic considerations.
- Direct Source Coding
- Transform Coding
- Predictive Coding

Any Questions..??