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The Big Picture

Images quality improvement

« Enhancement techniques
Better looking images satisfying some subjective criteria
- The processed image may not be closer to the true image

Restoration
Try to find the best possible estimate of the original (and unknown)

image following objective criteria
- Possibility to exploit all the additional knowledge about the

original image, imposing constraints to limit the solution




Image Restoration

Introduction

Try to remove or minimize some known degradations
in an image.

In order to do this, we should have:

Precise information about the degrading phenomenon
Analysis of the system that produced the degraded image

Typical items of information required:
- Models of the impulse response of the degrading filter

- PSD of the original image
- PSD of the noise




Image Restoration

Linear Space-Invariant restoration filters

If we assume that the degrading phenomenon is linear and
shift-invariant, the simplest model of image degradation is

g(x,y)=h(x,y)* f(x,y)+n(x, )
G(u,v)=H(u,v) -F(u,v)+n(u,v)

R linear shift-invariant A s
f original image system A g degraded image

7 noise

How to come back to the original image?




Image Restoration

Inverse filtering

Let’s consider the degradation model expressed as
g=nhf
We want to estimate f knowing g and /

1. Let’s consider an approximation f to f
2. Minimize the squared error between the observed
response g and the response § obtained with the input f

3. Find ]7 that minimizes the squared error &2




Image Restoration

Inverse filtering [2]
The error between g and g is given by
c=g-g=g-hf
The squared error Is given as
e?=c'e=(g~hf) (g~ hf)
=g'g-f"h'g-g"hf + fTh"hf
Now, let's find f that minimizes &

2 ~
0 oW g 2n" ]

of




Image Restoration

Inverse filtering [3]
Setting this expression to zero, we get
f=0"h)h'g
If 4 is square, non-singular (i.e., invertible) and circulant (or
block circulant), than the previous one becomes

f=h'g 0@@ where:
W

= matrix of the
eigenvectors of &

Inverse DFT

Point by point transform-domain

filtering with the DFT of g D, = diagonal matrix whose

M elements are the
DFT of g (with a .
scale factor of 1/N) eigenvalues of A




Image Restoration

Inverse filtering [4]

These considerations lead us to the formulation of the

Inverse filter,
G(u,v)
H(u,v)

ﬁ(u,v)z

that may be expressed as
1

L,(u,v)=
u: if H(u,v) has zeros,
the filter fails!

Moreover, if we have noise, we get

~ @ uniformly distributed
Fu,v)=F(u,v)+
@ lowpass function




Inverse filtering [5] - Example

original image blurred image (length = 25, theta = 15)

MSE = 28.1355




Inverse filtering [6] - Example

original image restored image (Inverse filtering)

MSE = 0.0401




Inverse filtering [7] - Example

blurred image (length = 25, theta = 15)
original image + gaussian noise (o2 = 0,01)

MSE = 29.3082



nverse filtering [8] - Example

original image restored image (Inverse filtering)

MSE = 32.4683




Image Restoration

Power Spectrum Equalization (PSE)

Let’s come back again to our degradation model:
g(x, y)=h(x,y)* f(x,y) +n(x, )
G(u,v)=Hu,v) - F(u,v)+n(u,v)

The model of power spectrum equalization (PSE) try to find
a linear transform L in order to obtain an estimate

J(x,y)=Llg(x,»)]
subject to the constraint
CI)}(u,v) =D  (u,v)




Image Restoration

Power Spectrum Equalization (PSE) [2]
Applying L to the degradation model, we’ll obtain

- (u,v) L@ | )@, @)+ @ @) |= D, ()
where L(u,v) is the Modulation Transfer Function (MTF) of
the filter L.

Deriving L(u,v) from this expression, the final result is
— —1/2

1

LPSE(M’V):‘L(M’V)‘: O (u,V)

D, (u,v) |

‘H(u,v)‘2 +




Image Restoration

Power Spectrum Equalization (PSE) [3]
Characteristics of the PSE filter X

1 1

Ly (u,v) = ‘L(U’V)‘ = D > =
U(u’v) ’
H (u, V)XJF((PW/))\ . H(u,v)

Requires knowledge of the PSDs of the origina_l Image and noise
processes
If the noise PSD tends to zero, the PSE filter tends to the inverse filter

Only restoration in the spectral magnitude (no phase correction)

Its gain is not affected by zeros in H(u,v) as long as &, (u,v) is also not
zero at the same frequencies

The gain of the PSE filter tends to zero wherever the original image
PSD is zero (possibility to control the noise)




Image Restoration

The Wiener filter

Provides optimal filtering by taking into account the
statistical characteristics of the image and noise processes

optimal = best achievable result under the conditions
Imposed and the information provided

The basic degradation model used is
g=hf+n

where f and 17 are stationary linear stochastic processes
with known spectral characteristics or known

autocorrelation




Image Restoration

The Wiener filter [2]

Approach

We want to derive a filter L in order to obtain a linear
estimate f = Lg to f from the given image g

The criterion used to minimize the MSE is

o= el -7 |

First, we express the MSE as the trace of the outer product
matrix of the error vector

= e[w] (77}




The Wiener filter [3]

Approach

Because the trace of a sum of matrices is equal to the sum
of their traces, the E and 7 operator may be interchanged.

Now, exploiting some relationships, we’ll get that the MSE
can be even written as

& =Tr(p,—2¢,h"L" +Lhg¢ h' L' + L L")

Note that here the MSE is no longer a function of £ ¢ or n,

but depends only on the statistical characteristics of fand
n,aswellason z and L




Image Restoration

The Wiener filter [4]

In order to derive the optimal filter L, we can calculate

oe*
G_L = —2¢th + 2Lh¢th + 2L¢,7 =0

which leads to the optimal Wiener filter function

L, = ¢, Cig 1" +4,) D

Problem: making the inversion of this matrix is not easy

Possible solution: let’s try to write the matrix as a product of
diagonal and unitary matrices




Image Restoration

The Wiener filter [5]

First of all, we know that # Is block circulant and that &,can
be usually approximated by a block circulant matrix

As a consequence,
h = WD, W
@, = WD W
Moreover, @, is a diagonal matrix if 77 is white:
@, = WD, W
The Wiener filter is then given by
L, =wD,D,(D,D,D, +D,)*W™




Image Restoration g

The Wiener filter [6]

So, the Minimum Mean Squared Error (MMSE) estimate is

F=Lyg w +@)

given by

Transfer function H(u,v) PSD @,(u,v) of the
of the degrading system original image

=

=
\ﬂ«

DFT of g (with a
scale factor of 1/N)

4

PSD @ (u,v) of the
noise process

D (u,v)H (u,v)G(u,v)

H (u,v)

Fluv)= H(u,v)CDf(u,v)H*(u,v) +® (u,v) B

D, (u,v)

‘H(u,v)‘ + D, () _




Image Restoration

The Wiener filter [7]

L, (u,v)= H (u,@,_\

2 (®, (u,v
_‘H(u,v)‘ @, ()

Without noise, we have @, (u,v)=0, and this filter reduces
to the inverse filter

This is the inverse of the SNR ratio; consequently, also if
the SNR is high the Wiener filter is close to the inverse

If there is no blurring (i.e. H(u,v)=1), then

L, (u,v)= )
e D (u,v)+D, (u,v)




The Wiener filter [8] - Example

original image blurred image (length = 25, theta = 15)

MSE = 28.1355




The Wiener filter [9] - Example

original image restored image (Wiener filtering)

MSE = 12.3747



The Wiener filter [10] - Example

blurred image (length = 25, theta = 15)
original image + gaussian noise (o2 = 0,01)

MSE = 29.3082



The Wiener filter [11] - Example

original image restored image (Wiener filtering)

MSE = 29.5374



Comparative Analysis: inverse, PSE, Wiener

When the noise PSD is zero, the PSE filter is equivalent to
the inverse filter

When the noise PSD is zero, the Wiener filter is equivalent to
the inverse filter

The gains of the inverse, PSE and Wiener filters are related
as ‘L, (u, v)‘ > ‘LPSE (u, v)‘ > ‘LW (u, v)‘

The PSE filter is the geometric mean of the inverse and
Wiener filters, L, (u,v) =L, u,v)L,, (u,v)]"*

Because |Lg; (u,v)| > |L, (u,v)|, the PSE filter admits more
high-frequency components with larger gain than the Wiener

The PSE filter doesn’t have a phase component. Phase
correction, if required, must be applied separately




Constrained least-squares restoration

Wiener filter is optimal, generally, only for the class of
Images represented by the statistical entities used, but it
can be unsatisfactory for other specific images

The Constrained least-squared restoration (CLSR),
Instead, is an optimal procedure for every specific image
given, under particular constraints that are imposed

Called L a linear filter operator and using again the
degradation model g =4 f + g, the rzestoration problem is to
minimize HLfH subject to Hg — th = |




Image Restoration

Constrained least-squares restoration [2]

Using the method of Lagrange multipliers, we want to find
that minimizes the function

1) =|7[ + ol -7 -1l ]

where o Is the Lagrange multiplier.

Taking the derivative of J (f) with respect to fand setting
It equal to zero, at the end we get

F=h"h+A' L) h g

where y = 1
a




Image Restoration

Constrained least-squares restoration [3]

Using the Laplacian operator, we can construct L as a
block circulant matrix

Now, L is diagonalized by the 2D DFT as D,=W-'LW, where
D, Is a diagonal matrix

Exploiting this property, at the end we get

I;(u,v)z

H (u,v)

_‘H(u, v)‘2 + 7/‘L(u, v)‘2 )

G(u,v)

where L(u,v) Is the transfer function related to the constraint

operator L




Image Restoration

Constrained least-squares restoration [4]

H (u,v)
|H ) + L)

f(u,v) = G(u,v)

Considerations:

« The PSDs of the image and noise processes are not required

It's necessary to have an estimate of the mean and of the
variance of the noise process (in order to determine the
optimal value for y)

If y=0, the filter reduces to the inverse filter




Image Restoration

Constrained least-squares restoration [5]

How to determine y ?
Let’s define a residual vector as r =g —hf

We want to find y such that HFHZ W@ ;ifs:a(::;

total energy of the
noise process

Choose an initial value for y
Compute F(u,v) and f

: 2
Form the residual vector » and compute HrH

: 2 2 . 2 2
Increment y if || <[] -, decrement it if || > [z +
and return to step 2. Stop if || =|n| t&




Image Restoration

The Metz filter

Modification of the inverse filter for application to nuclear

medicine images, including noise suppression at high

frequencies  lowpassfilter  jhighpassfilter _,  ~ ciier

x Is a factor that controls how much up with the
frequencies we can go to have a predominance of the
Inverse filter (after that, the noise-suppression feature
becomes stronger)

x can be selected in order to minimize the MSE
between the filtered and the ideal images




=

Image Restoration a

Information required for image restoration

1 > MTF of the degradation

INVERSE FILTER L, (u,v) = - process
@) S psr

1
> > MTF
POWER

SPECTRUM Lpgp (u,v) = > PSD of the noise

EQUALIZATION AN > PSD of the original
image

> PSF

WIENER FILTER L, (u,v)= » Original image and
noise autocorrelation

matrices




Deblurring

Blind Deblurring
Sometimes it’s not possible to obtain distinct models of
the degradation phenomena
We need to derive mformatlon from the degraded image

D, (u,v) = ‘H(u v)‘ D (u,v)+D, (u,v)
PSE: d|V|de the given degraded Image N X N into M x M
segments g,(m,n), [=12,.,0° where Q=NIM
D, (u,v)= ‘H(u v)‘ O, (u,v)+D, (u,v)
Blurrlng across the boundaries of adjacent sublmages IS ignored
Average PSDs © ., over all the Q? available segments

éi‘@gl (u,v) @)r&)f(u,v) +Cf),7(u,v

No necessity to know MTF & PSD of the noise, but only @ @

DENOMINATOR
OF L,y




Deblurring

Iterative Blind Deblurring

Assumptions:

MTF of the LSI system causing the degradation has zero phase

The magnitude of the LSI system is a smoothly varying function
of frequency

The Fourier representation of a signal is affected by the
blur function but edge locations don’t change in the phase

Method of Rabie: try to recover the original magnitude

spectrum using the edge information preserved in the
phase




Deblurring

Method of Rabie

M, (u,v)=M, (u,vIM,(wu,v) M, (u,v),M,(u,v) spectralmagnitudes
0,(u,v)=0,(u,v) M, (u,v) degradation MTF (zero phase)

1. M,(u,v) is smoothed with the assumption that M, (x,v) Is smooth
2. M{u,v)is initially approximated like
SIM , (u,v)]

, S smoothing operator
SIM , (u,v)]

S[M
¢ SIM, ]

M, (u,v)=M,(u,v)
3. Iterate the formula to refine M (u,v) : 1\2}” =M

Note: this method uses the entire image, not sections!




Deblurring

Method of Rabie [2]

Problem: in this way a unit constant is being added to the

spectral magnitude at all frequencies: infact
M? =M, +1

Production of a noisy Initial approximation of M,
(amplification of the high frequency components)
M, can be better approximated by the formula
M

/

M°=M, +
f g S[Mf]




Deblurring

Method of Rabie [3] - Summary

Obtain an initial estimate of Mf with
M
M, + /
S[M ]
S[Mj,]

Update the estimate iteratively using M'" =M,
S[M, ]

Stop when the MSE between two consecutives iterations
IS less than a certain limit

Combine the best estimate of M, with the phase function,
obtaining the Fourier transform of the restored image

F(u,v) =M (u,v)exp[j0, (u,v)]




Iterative Blind Deblurring - Example

original image blurred image (length = 25, theta = 15)

MSE = 28.1355




Iterative Blind Deblurring - Example

original image Restored Image, NUMIT = 10

MSE = 21.6977




Iterative Blind Deblurring - Example

original image Restored Image, NUMIT = 25

MSE = 15.5829




Iterative Blind Deblurring - Example

original image Restored Image, NUMIT = 50

MSE = 12.2869




Deconvolution

Homomorphic Deconvolution

An image that is given by the convolution of two images:

g(x.y) = h(x,y)* f(x.y)

E———

* . X . . +
Fourier Logarithmic :
transform transform Fourier

transform

Inverse +

+ Complex cepstrum

+I Linear »
filter

*

Inverse
Fourier
transform || Filtered

. + .
Fourier Exponential
transform transform




Image Restoration

Space-variant Restoration

Problems of restoration techniques like PSE, Wiener:

Assumption that the image can be modeled by a stationary
(random) field,;

Necessity to know the PSD of the image

» The deblurred image suffer from artifacts at the boundaries
Several adaptive techniques for space-variant restoration
have been proposed:

B Sectioned image restoration

m Adaptive-neighborhood deblurring
m Kalman filter




Sectioned image restoration

The input image is divided into small P x P sections

For each section, the MAP (maximum-a-posteriori
probability) is estimated -> suppression of the noise

Each small section is now close to a stationary process

- Wiener, PSE

Combine all the sections together to form the final
deblurred image

Limitations:

m Stationarity of each section may not be satisfied

m Sections cannot be arbitrarily small (must be larger than the
Region of Support of the blur PSF) - artifacts could arise at
the section boundaries




Adaptive-neighborhood deblurring
The input image is treated as being made up of a
collection of regions of relatively uniform gray levels

An adaptive neighborhood is determined for each pixel in
the image

Assuming that each region is larger than the Region of
Support of the PSF,

i (D) =h(p.q)* £, (P.q)+n,.,(P.q)
Next, each adaptive-neighborhood region is centred
within a rectangular region of the same size as the input
Image, and the area surrounding the region is padded
with its mean in order to reduce edge artifacts




Image Restoration

Adaptive-neighborhood deblurring [2]

FFT
G, ,wv)y=HWuv)F,, wv)+n,, @,v)

2D Hamming window w,(p,q)
2. 27 -
WH(P,q)={O.54—O.46cos(Aj[T liﬂ{o.54—0.46003(ﬁ/7; qlﬂ

gnn(D:)wy (pq)=[h(p,q)* 1,,..(0: )y (P @) + 1, (P, @)W, (P, q)

Noise estimation

M W,v) =4, ,@,v)G, ,(u,)
where 4,, ,(u,v) Is a frequency domain, magnitude-only
scale factor that depends on the spectral characteristics
of the adaptive-neighborhood region grown




Image Restoration

Adaptive-neighborhood deblurring [3]

G (u,v)
il 1-4 (u,v
H () [1-4,, ,(u,v)]

Imposing the PSDs of the original and of the estimate
noise to be equal, we get

®, (v)=4,, w0, (uv)

n

A (u,v)= P, (.7) )
" ‘H(u,v)‘zd)fm’n (u,v)+®, (u,v)

[:’m,n (u,v) =

- D, (u,v)
D, (u,v)




Kalman filter

i

Image Restoration \:ﬁ

The signals or items of information involved are
represented as a state vector f(n) and an observation

vector g(n)

L Process
f system

:L Observation
1 system

f(n+1)
R delay

N— (memory)

£ (n) 9 () =h(n)f(n)+n,(n

1 h(n)

The input is
generated by a
process noise
source 1n,(n)

DBSERVATION

MATRIX @

I a (n+l1,n)

f(n+1) = a(n+1n) f(n)+n,(n |

- The output is affected

by an observation noise

STATE TRANSITION source 171,(n)

MATRIX




Image Restoration

Kalman filter [2]
g(n)=h(n) f(n)+n,(n)

Kalman filtering problem: given a series of the
observations G, ={g(1),g(2),...,g(n)} for each n >1, find
the MMSE estimate of the state vector f(l)

The Innovation process

B Suppose that, after n-1 observations g(1), g(2), g(n-1), the
MMSE estimate f (n—JJGn_l) of f(n-1) has been obtained

m Given a new observation g(n), we could update the previous
vector and obtain a new state vector f(#|G,)

m Bacause f(rn) and g(n) are related via the observation system,

defined g(n|G, ,) the estimate of g(n) given G,_,, the innovation
process is

g(n)=gn)-gnG,,), n=12,..




Image Restoration

Kalman filter [3] - Summary

Data available: the observation vectors G, ={g(1),g(2),....g(n)}

System parameters assumed to be known:
m The state transition matrix a(n+1,n)
m The observation system matrix /(n)
m The AutoCorrelation Function matrix of the driving noise ¢, (n)
m  The ACF matrix of the observation noise ¢, (n)

Initial~ conditions:
m /1G,)=E[/D]=0

m The ACF matrix of the predicted state error, ¢8p (n+1n),is
diagonal per n=0

¢gp (110) =D,




Image Restoration

Kalman filter [4] — Computational Steps

1. Compute the Kalman gain matrix as
K(m)=a(n+1,n)g, (n,n=DR ()|a(n)g,, (.00 () +6, ()]
Obtain the innovation process vector using
¢(n)=g(n)—h(n)f(nG,.,)
Update the estimate of the state vector as
f(n+1G,) =a(n+1n) £ (4G, )+ K (n)¢ ()
Compute the ACF matrix of the filtered state error as
¢, (n)=¢, (n,n=1)—a(n,n+1)K(n)h(n)g, (n,n-1)
Update the ACF matrix of the predicted state error as
¢gp (n+1n)=a(n+1, n)¢gp (n)a’" (n+1,n)+ ¢, (n)




Restoration of Nuclear Medicine Images

Nuclear medicine images are useful in functional imaging of
several organs, but are severely affected by several factors

that degrade their quality and resolution.
Causes of degradation:

Poor quality control - Blurring
Poor statistics 2> Low SNR

Photon-counting (Poisson) noise = Noise amplification
Gamma-ray attenuation - Attenuating effect
Compton scattering - Background noise

Poor spatial resolution - Low efficiency in photon
detection




Review: what is SPECT?

Acronym for Single Photon Emission Computerized
Tomography

A radioactive isotope Is bound to a substance that is
readily taken up by the cells in the brain

A small amount of this compound is injected into the
patient's vein and is taken up by certain receptor sites in
the brain. The patient then lies on a table for 14-16
minutes while a SPECT "gamma" camera rotates slowly
around his head

A supercomputer then reconstructs 3-D images of brain
activity levels




Example: SPECT images of the brain

Radioactive isotope: %M Tc-chloride

44 planar projections, each of size 64x64 pixels
m Radius of rotation: 20cm
m Time for acquisition: 30s

Transverse SPECT images have been reconstructed after
performing geometric averaging of conjugate projections
and restoration using the Wiener, PSE, and Metz filters




Example: SPECT images of the brain [2]

SPECT image
of the brain

PRERECONSTRUCTION
RESTORATION




Example: SPECT images of the brain [3]

GEOMETRIC SPECT image

AVERAGING AND @ of the brain
PRERECONSTRUCTION
RESTORATION




Conclusions

I_.-'."‘u%
e _,‘:“f_,r.:-_l
Z
\ 7~

Image degradation is present in even the most
sophisticated and expensive imaging system

Several techniques have been implemented to try to
solve the problem

Most of the restoration techniques require detailed and
specific information about the original image and the
degradation phenomena

Several additional constraints may also be applied

Always difficult to obtain the necessary accurate
Information

The quality of the result depends on the quality of the
Information and of the constraints applied




Conclusions

A good solution of the problem is possible
only with a good understanding of it




QUESTIONS?

Thank you!
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