Addendum to the proof
of log n approximation ratio
for the greedy set cover algorithm

(From Vazirani’s very nice book "Approximation
algorithms”)

Let X;, X,,...,X, be the order in which the elements are
covered (break ties arbitrarily)

Lemma: c(x;)<=C*/(n-i+1)
Proof. Suppose we are selecting a set that will cover x..
The remaining elements can be covered with C* sets.

Thus there largest set in C*, the optimal solution, will
cover at least (n-1+1)/C* elements.

l.e., The cost per element is at most C*/(n-i+1)
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Thus

« Theorem. The approximation cost is at most H(n)
* Proof. The cost is at most the sum of the costs c(x))

C*
-1+1

£C*é1£C*H(n)
- N

& V£
gzlc:(x) -

* Proving the bound H(s) is more tedious.
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Finding
fragments of orders, partial orders,
and total orders from 0-1 data
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Themes of the chapter

Given a 0/1 a matrix
Rows: observations, columns variables
Can one find ordering information for the observations?

Without additional assumptions, no; with some
assumptions, yes

Paleontological application:
— find orders for subsets of fossil sites

— a good ordering for (a subset of) the rows is one where the 1s
are consecutive

Also other applications
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Themes of the chapter

* Finding small total orders (fragments) from 0-1 data
— Local models/patterns

* Finding partial orders from 0-1 data
— A global model

 Find total orders for 0-1 data
— A global model
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Finding small total orders (fragments)
from 0-1 data

Model: a subset of observations and a total order on the
subset

Task: find all such models fulfilling certain criteria

Algorithm: a pattern discovery algorithm (levelwise
search)
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Finding partial orders from 0-1 data

Model: a partial order over all observations

Loglikelihood: proportional to the number of cases the
observed occurrence patterns violate the continuity of
species

Prior: prefer partial orders that are as specific as possible
Task: find a model with high likelihood * prior

Algorithm: Find fragments and use heuristic search to

build a good partial order
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Find total orders for 0-1 data

Model: a total order

Loglikelihood: how many cases the observed occurrence
patterns violate the continuity of species

Task: find the best total order for the observations

Algorithm: spectral method
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Type of data

0-1 data, large number of variables

Examples:

— Occurrences of words in documents

— Occurrences of species in paleontological sites

— Occurrence of a particular motif in a promoter region of a gene

Typically the data is sparse: only a few 1s

Asymmetry between Os and 1s
— A’1” means that there really was something
— A 0" has less information (in a way)
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Example

Paleontological data from the NOW (Neogene Mammal
Database)

Fossil sites (one location, one layer)

Each site contains fossils that are about the same age
(+- 1 Ma)

Variables: species/genera

A "1” Is reasonably certain

A "0” might be due to several reasons
— The species was not extant at that time
— The remains did not fossilize
— The tooth was overlooked
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Site-genus -matrix

== " . = . . 2 " Enm u = = = oo iR "
R | _.'_'J' . L " . N - |.:_ s
-.-. ... | ] = mn -. .. -. .--- : s
R T T W :':.-_ e, =" A B PR
.-l=_..: " ] -:._ g E' _::r-_.- -_I_-:_ _-"-r..' .: '.-.._ o o= ._"
P T e S R I
. _:.-. '.-_. "y .-._:. '."'Jl "l -.'-'_'.l-.-"J-'.' .'.".i:: - ::.l.'
= " am - " - ek u = Em u W
i e e A : v
n . ¥ N C - " el l_-l u l.: ' _
Suie R T LG S R . L T N
. n n am n ...I ] n n -
L I T e
Py -l. -:.IT I.f .--.. ... .. .f . .L... ] :. =l .-... ..I‘
v oL LR :I' Ll Coaly, Bl a amoa aman " m " |':. "ol
LI e :.I !.:- : ..IIIJ - I ..= I.: :lq -.I.I #
" lm g | n " " am " 1 L W . :
l‘.=lll.l.: ‘.Er.- I.: ..- -.I i " l.-.: -. ...f..fll. Ll .:..I--
I-I.-..- l.:_ 5 :.I-. S ..Il--1l -l-..i -I..ll " a ...'.. - -l:.
I1-.-...l I. .:. e .': I:I r ... = I.l--....l..l -I: ] .I .lﬁ
.. : ...$ .. .- ] .:- ..l ::... :.. .:-.: n X n ::_.--..-
'.i.:" l‘I:.b ;Fl!.: .-I.F i 1.: ::'l l.- - lll.ﬂl'l1 : .Ill-.l.‘l..
- N i T _"'.:..- s T ._.'I..'.: " "_. . .
-"5'.- ., __-'l. 22T et _.--i - R sl :_.._-.:_
I.I.I;-II. .---.r I.rl. - -llr"lll.".l' 1I..' - ;q.r g =
I!: l‘- I.ll " E I .Ill Ijl..'. I:- I:I .I !.-:I:
.-I et HE .-.l:ll '..::.-'-. .:.--lll- .-. -k ..-I b | .-.ll.l n

Algorithmic methods in data mining, Fall g)gﬂ'lellﬁ(l Mannila



Background knowledge

e Species do not vanish and return

* An ordering of the sites with a "0” between

"1"s Is improbable time

P P OOFrR OFrR FRr PFP OO
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Example: seriation
In paleontological data

e Given data about the
occurrences of genera in

. 110
fossil sites 0 0
o) 2
. ! ‘ 0 1
« Want to find an ordering L1011
in which occurrences of a @ o
genus are consecutive N o ‘8
0 1
0 1@1
 Lazarus count: how 0011

many Os are between 1s
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A better ordering

1110000O0O00O0

A smaller Lazarus

count

1 00 0O0O0O
1 010000
1100000

O 000011

O 0O00O0OO0O0OT111
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Find small total orders (fragments)
from O-1 occurrence data

Fragment: a total ordering of
a subset of observations

111000000
<a<d< .
E.g., c<a<d<f 0111001010
1 1 000100 10:

4 : . . C O1 0110000
Intuitive Interpretation: . 5111111000
d 0011111100
For most variables the f 0001111010
: OO0OO0OO0O111101:
sequence of observations 0101011110
has no pattern of the form : 1010001111}
..1...0...1... oo eees e seeeesseeee s sesseeeneee
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Fragments of order

0/1 data set

Fragment of order f is a sequence of observations
<t <t;<..<t

An variable A disagrees with fragment f, if for some

I<j<h we have t(A)=t,(A)=1, but t(A)=0.

Otherwise t agrees with f:

Then the column for A has the form
00..0011...1100...00

for the observations in f
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A 1 0 0 1
B 1 1 1 0
C 0 0 0 1
D 1 0 1 0
E 1 0 1 1
F 1 1 1 1
a<b<c<d: dis ag dis dis

1101 0100 0101 1010

b<d<f<a: ag dis ag ag
1111 1010 1110 0011
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What is a good fragment of order?

A sequence f of rows, say, u<v<w<t

Da(f): the number of variables disagreeing with the
ordering

Fr(f): the number of variables having at least 2 ones in
the rows of f

A good fragment has high Fr(f) and low Da(f)
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Problem statement

Given thresholds S and g

Find all fragments of order f such that in the data
Fr(f) > S
Da(f) < g

and all subfragments of f satisfy these

and the fragment has smaller Da value than its peers
— Any other fragments from the same set of objects
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Algorithm

How to find fragments with the specific properties?

Start from fragments of length 2
— No disagreements are possible

— Only the bound Fr(f)>S needs to be tested

Iteration:

— Assume fragments of length k-1 are known

— Then we can build candidate fragments of length k
— Continue until no new patterns are found

A complete algorithm: all fragments will be found
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Monotonicity property

 Fragment t; <t, <t; <... <t, can satisfy the
requirements only if all subfragments of length k-1 satisfy
them

* All these have to be in the collection of fragments of size
k-1

 The levelwise algorithm
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Algorithm

Find F2, fragments of size 2
C = all triples A<B<C such that A<B, A<C, and B<C are in F2
k(33

While C is not empty
compute Da(f) for all fin C
Fkr3{f in C | Fr(f)> s and Da(f)< g}
k3k+1

Cfr3all fragments of length k such that all the subfragments of
length k-1 are in Fk
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Complexity of the algorithm

Potentially exponential in the number of variables
|F+C| = the size of the answer + all the candidates
Proportional to

IF+C| nm
for a matrix with n rows and m columns

Too low values of S or too high values of gwill lead to
huge outputs
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Experimental results

Data about students and courses
Columns: students

Rows: courses

D(s,c)=1 if student s has taken course c

Here we know the true ordering
— Or actually two: official ordering
— Real order in which the student took the courses
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Part of the recommendations

Programm il@

Prosramming
Project

Data Structures

Project

Soltware
Engineering
Project

Databases

Database Database
Management Application

Project

Computer

Organization

Scientilic
Writing
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Fr(f)=1361, Da(f)=3.2%

(Programming,
Computer Organization,
Programming Project,
Data Structures Project,
Scientific Writing)



Results

o T Maxl |T| o I6;
(in %) (in % (in %) (in %)

o

20 0 3 2 96.3 99.5
20 2.9 5 578 486 0.5
20 5 6 1528 40.0 66.0
15 0 3 26 89.9 98.6
15 2.5 6 1934  46.8 78.2
15 5 7 5158  38.9 2.3
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Results (paleontological data)

Fragments for sites
Or transpose the matrix: fragments for species

Seqguences of sites such that there are very few Lazarus
events

Provide ways of looking at projections of the data

Can be used to find partial orders
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Example: words in documents

* Represent collections of documents as term vectors
* Which words occur (1) in the document or not (0)
« Very large dimensionality, lots of observations
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Example from Citeseer (in 2005)

“database system” ‘“query” ‘“selectivity estimation” | Hits
1 | 1 49
1 1 0 1930
0 1 : 221
1 0 1 4

What does this tell us about these terms?
Databases and selectivity estimation together
do not occur without queries

Databases < queries < selectivity estimation
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Old (2005) example from Google Scholar

prior distribution — MCMC
151,000 documents

prior distribution MCMC
2950 documents

— prior distribution MCMC
1050 documents

prior — distribution MCMC
165 documents

prior < distribution < MCMC
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Example from Google Scholar, Nov. 24, 2007

e prior distribution — MCMC
2,220,000 documents

e prior distribution MCMC
16,300 documents

* —prior distribution MCMC
6,030 documents

e prior — distribution MCMC
1,230 documents

prior < distribution < MCMC
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An aside: have the ratios of the frequencies

changed?
Query 2005 2007 Ratio
pdm 2950 16300 2.5
pd-m 151000 2220000 14.7
—pdm 1050 6030 5.7
p—dm 165 1230 7.5
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Next theme

 Find small total orders from 0-1 data

* Finding partial orders from 0-1 data

 Find total orders for 0-1 data
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Finding partial orders from 0-1 data

Model: a partial order over all observations

Loglikelihood: proportional to the number of cases the
observed occurrence patterns violate the continuity of
species

Prior: prefer partial orders that are as specific as
possible

Task: find a model with high likelihood * prior

Algorithm: Find fragments and use heuristic search to
build a good partial order
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Why partial orders?

Determining the ages of sites is difficult
Radioisotope methods apply only to few sites

In paleontology the so-called MN system: 18 classes for
the last 25 Ma

Classes are assigned by ad hoc methods

Searching for a total order might not be a good idea
The MN system is a partial order
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Finding partial orders from data

°  How to find a partial order that
fits well with the data?

° e What does this mean?
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What Is a good partial order?

 The Lazarus count of a species with respect to a partial
order P:

— For how many sites the species was extinct at the site,
but extant before and after it (as determined by P)

— The same definition as for total orders
e A good partial order has small Lazarus count

 Can be formulated as a likelihood (a Lazarus event is a
false positive)

Algorithmic methods in data mining, Fall 2007 Heikki Mannila



3 0 0 1

OO [T

o 5 1 1 1
Laz No Laz No Laz
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What Is a good partial order?

Find a partial order that has a low Lazarus count
The trivial partial order has Lazarus count O

Want to find a partial order that is specific (close to a total
order) and agrees with the data

Measures of specificity:
— the number of linear extensions of P (hard to compute)
— number of edges in P
Find a partial order that has high
specificity * likelihood
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Algorithm for finding partial orders

Compute fragments from the unordered data
E.g,a<d<b<ex<fandb<e<candb<a<c<fand...

Form a precedence matrix: in what fraction of the fragments
does a precede b

Form a partial order that approximates the precedence
matrix (heuristic search)
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Fragments and reverse fragments

The fragment generation will produce for each fragment f
also its reverse fR

The pairwise precedence matrix would be useless
Divide the fragments into two classes (graph cutting)

Discard one class
Build the precedence matrix
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From precedence matrix to partial order

e Heuristic search

 Add edges to the partial order so that the match with the
precedence matrix improves

« Keep track of transitivity

 Difficult (and interesting) algorithmic problem
« Empirical results look good

* Very recent theoretical results
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The fraction of pairs ordered in the same way by P and Pl\ -

0.88
_ >
0.86 | B =3
0.84 | e '
082} , €=0
,e=1
0.8} e=2
0.78 &0
, €=1
0.76 | 5
0.74

0 2000 4000 6000 8000 10000

Number of fragments
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The completeness of the partial order

099t

098t

097t

0967}

095+t

0.94

0 2000 4000 6000 8000 10000
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@ Montredon [10] La Roma 2[10]

Villadecavalls [10] @
Ravin de la Pluie (RPL)[10]
Los Mansuetos [12]

nte Minero [11]

approximately 6-7 MN classes of sites will be re-evaluated
on the basis of the partial order.
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Themes of the talk

Find small total orders from 0-1 data

Finding partial orders from 0-1 data

Find total orders for 0-1 data
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Finding good total orders for a matrix

Given a site-genus matrix
What is a good total ordering for the rows?

One In which there are as few Lazarus events as
possible

Model class: total orders

Loglikelinood proportional to the number of Lazarus
events
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How to find such an ordering of the rows?

« If there is an ordering that has no Lazarus events, it can
be found in linear time (Booth & Lueker)
— consecutive ones property

 But normally there are (lots of) Lazarus events
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Finding good total orders for a matrix

The problem of finding the best ordering of the matrix is
NP-hard

Finding whether there is a submatrix of size k that has
no Lazarus events is NP-hard

The fragment method finds such submatrices
Local search, traveling salesperson approaches

Spectral methods
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Spectral ordering for finding good total
orders for a matrix

e Spectral ordering

 Compute a similarity measure s(i,))
between sites (e.g., dot product)

e Laplacian L(i,))

| o S(‘ia j)a li ]
Zkls*(z',k), =]

L(i,]) —{
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 The eigenvector v corresponding to the
second smallest eigenvalue of L satisfies

Zjv‘f =0, jvf =1, and Z}_ s(@, (v, — 1»'J.)2 =1 1s minimized.

 Maps the points to 1-d, keeping similar points
close to each other
* The values v, can be used to order the points
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Empirical observation

The eigenvector seems to minimize also Lazarus events
Even better than some combinatorial algorithms
Why?

No really good intuitive theoretical understanding
— Related to mixing time of Markov chains etc.
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Site-genus -matrix
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After spectral ordering
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Coefficient from spectral clustering

0.2

015

o

[
&

—0.05

-0.15

Input file: genus 10 site 10

4 B a 10 12 14 16

MM of 5ite

Fortelius, Jernvall, Gionis, Mannila, Paleobiology 32 (2006)
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gl sl gn sn C Nh ch NMN cMN
10 10 139 124 0.97 21 0.98 119 0.96
10 5 139 259 0.96 35 0.97 230 0.95
5 10 198 136 0.97 22 0.99 125 0.97
5 5 201 273 0.96 35 0.98 240 0.96
2 10 281 147 0.97 22 0.99 132 0.97
2 2 285 512 0.94 46 0.97 444 0.94
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gl sl Ls LMN Lage Lazs LazMN Lazage
10 10 -4881 -5153 -4998 3792 4174 3974
10 H -9038 -9573 -9416 9728 10906 10563
5 10 -6008 -6455 -6275 5220 5901 5622
5 B -10723 -11340 -11132 13003 14638 14147
2 10 -6904 -7429 -7234 6398 7314 6969
2 2 -16660 -17610 -17323 30568 34886 33621
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Questions

e Computational
— Why does it work so well?

— How well does it actually work (what is the smallest
number of Lazarus events for this data?)

— How to interpret the coefficients?

e Paleontological
— Fully based on the occurrence matrix (excellent and bad)

— Site-species data is only one type of data; how to use
other types of data for the ordering?
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Rough estimates of the sizes of
the model classes

N observations
Fragments of size at most k

—  N¥individual fragments
— 2N sets of fragments
20(N2)

Partial orders

Total orders N!
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Concluding remarks

General task: finding order from unordered data

Here using species continuity as the additional
iInformation

Other applications are possible

Model classes
— Fragments
— Partial orders
— Total orders
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Lots of open questions

The unreasonable effectiveness of spectral methods on
discrete optimization task

Approximation guarantees
Fragments from other applications
MDL description of sequences via partial orders

Etc.
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