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10. Covering problems.

Given a set of concepts (rules etc.) that apply to examples (rows
of data etc.)

The concept covers the examples
How to find good small collections of concepts?

Not all concepts satisfying certain conditions
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‘Example: rows and attributes'

e Given a 0-1 matrix

e Set cover: Find a collection Z of variables such that for every row
t there is at least one variable A € Z such that t(A) =1

e Best collection: Find a set Z of variables with |Z| = k such that

there are as many rows t as possible such that ¢t(A) = 1 for some
AecZ.
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‘ Prototype problems'

Set cover problem: find a small set of concepts such that all
examples are covered by some concept in the set

Best collection problem: find a set of size k of concepts that
covers as many examples as possible

Both problems are NP-complete

Simple approximation algorithms with provable properties
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Set cover problem I

Given a universe X = p1,...,Dn

Sets S51,5%,...,9, C X, US; =X
F =151,5,...,5.}.

Question: find the smallest number of set from F whose union is
X

|.e., find a smallest subcollection C C F such that

UseeS = X.

NP-complete (what does it mean?)
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‘ Trivial algorithm I

Try all subcollections of F

Select the smalles one that covers X

Running time O(2171|X)

Too slow
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Greedy algorithm for set cover'

Select first the largest set S
Remove the elements of S from X

Recompute the sizes of the sets

Go back to the first step
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As an aIgorithmI

1. U = X;

2. C =10

3. While U is not empty do
Forall S € Fletas = |Y; NU|
Let S be such that ag is maximal;
C=CU{S}
U=U\S
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‘ How can this go Wrong?I

e No global consideration of how good or bad the set will be
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‘Weighted version I

e Each set S € F has a cost ¢(5)

e Compute the number of elements per unit cost: (SNU)/c(5)

e At each step, select the S for which this is maximal
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‘ Running time of the algorithm I

Polynomial in | X| and | F]|

At most min(|.X|,|F]|) iterations of the loop
Loop body takes time O(| X ||F])

Running time O(| X ||F|min(|X], |F|))

Can be implemented in linear time O() ¢~ |5])
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Related problems I

Given a graph G = (V, E)

Independent set: find the largest set V'’ of vertices such that there
is no edge between any two vertices in V'’

Glique: find the largest set of vertices V'’ such that all pairs of
vertices of V'’ are connected by an edge

Clique in G is an independent set in G = (V,V x V\E)
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Related problems I

e Given a graph G = (V, F)

e Vertex cover: find the smallest subset V/ C V such that for each
edge (u,v) € E we have u € V' orv € V'
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Approximation algorithmsl

Consider a minimization problem

Instance I, cost of optimal solution a*(I), approximate solution
with cost «a([])

The algorithm has approximation ratio ¢(n), if for all instances of
size at most n we have a(I) < ¢(n)a™*(I)

The greedy algorithm has approximation ratio O(log n)

(i.e., d log n for some d).
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Approximation algorithm for vertex coverI

C = 0;

Select a random edge (u, v)

C =CU{u,v}
Remove all edges that are incident either with u or with v

Repeat until no edges remain
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Approximation guarantee'

The result is a vertex cover (why?)
No two selected edges share an endpoint

For any edge (u,v) at least one of v and v has to belong to any

vertex cover

For any edge (u,v) at least one of w and v has to belong to the

optimal vertex cover

Thus a(G) < 2a*(G) for all G
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Analysis of the greedy approximation algorithm for set cover

e H(d) = 2?21 1/i: the ith harmonic number

e Greedy approximation algorithm has approximation ratio H(s),
where s is the size of the largest set in F

e (Trivial bound; s)

e H(s) ~lIn s, i.e., the bound is quite good (s < | X]|)
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‘ Proof. I

Source: Cormen et al., Introduction to Algorithms

Optimal set cover C* and the cover C produced by the greedy
algorithm

S;: the ith set selected by an algorithm
Cost of 1 (counting the number of sets)

Spread this among the elements covered for the first time by S

Cost to item z is ¢, = (|S; \ (S1U...S;_1)|)~ 1

Costs by set .S; sum up to one

Cl =2 rex Ca
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C* covers X

Cl=) <> D o

reX SeC* zeS

For any set S € F we have (proof separate)

> o <H(|S))

xeS

cl< > H(S))

SeC*

and hence 7

IC| <C*"H(s)

where s = maz{|S|: S € F}
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‘ Best collection problem I

Given some concepts (rules etc.)
Find the best collection of k rules

For example, find the £ sets whose union has maximum size

Maximization problem, quality f(C) of the result = number of

elements in UgeeS

Simple approximation algorithm has bound

e—1
o > o)
e

*
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‘Submodular functions'

e The result is very general

e Concepts F, task fo find the best subcollection C* C F of size k

e Solution function f should satisfy for all C

f(€) =0

and forall CC D C Fand S ¢ F
f(CU{S}) - f(C) = f(DU{S}) — f(D)

I.e., the improvement obtained by adding S may not increase
when moving to a larger solution

e f is submodular; the result holds for all such functions
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‘Greedy approximation algorithm I

C=10
Gain of S in the context of C is f(CU{S}) — f(C)

Select the concept S that has the highest gain
C:=CU{S}

Repeat until C has k£ elements
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‘ Basic theorem '

Let C; be the optimal set of £ concepts

Let C; be the ith set formed by the greedy algorithm.

Assume
F(C) = F(Cit) = ~(F(CL) — F(Cir))

fe) > ()

Proof. Separate.
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Why does the assumption hoId?I

f(Ci) — f(Ciz1) = —(f(Cr) — f(Ci-1))

1
k

f iIs submodular

the greedy approximation algorithm

The concept C; \ C;_1 is the one that maximizes the gain.
(Something open here.)

23



\lgorithmic Methods of Data Mining, Fall 2005, Covering problems

‘ Applications'

e Which functions are submodular?

e [he concepts should not have interaction

e Variable selection?
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Some experiments.

10000 rows, 100 variables, each true with probability 0.1
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‘ Other dataset'

European mammals: 2183 rows, 124 variables (presence/absence in a
grid)
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‘Retail data, 88162 rows, 1000 cqumnsI
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