
Covering problems
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10. Covering problems� Given a set of concepts (rules etc.) that apply to examples (rows

of data etc.)� The concept covers the examples� How to find good small collections of concepts?� Not all concepts satisfying certain conditions



Example: rows and attributes� Given a 0-1 matrix� Set cover: Find a collection Z of variables such that for every row

t there is at least one variable A ∈ Z such that t(A) = 1� Best collection: Find a set Z of variables with |Z| = k such that

there are as many rows t as possible such that t(A) = 1 for some

A ∈ Z.
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Prototype problems� Set cover problem: find a small set of concepts such that all

examples are covered by some concept in the set� Best collection problem: find a set of size k of concepts that

covers as many examples as possible� Both problems are NP-complete� Simple approximation algorithms with provable properties



Set cover problem� Given a universe X = p1, . . . , pn� Sets S1, S2, . . . , Sm ⊆ X , ∪Si = X� F = {S1, S2, . . . , Sm}.� Question: find the smallest number of set from F whose union is

X� I.e., find a smallest subcollection C ⊆ F such that

∪S∈CS = X.� NP-complete (what does it mean?)
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Trivial algorithm� Try all subcollections of F� Select the smalles one that covers X� Running time O(2|F||X |)� Too slow



Greedy algorithm for set cover� Select first the largest set S� Remove the elements of S from X� Recompute the sizes of the sets� Go back to the first step
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As an algorithm

1. U = X ;

2. C = ∅;

3. While U is not empty do� For all S ∈ F let aS = |Yi ∩ U |� Let S be such that aS is maximal;� C = C ∪ {S}� U = U\S



How can this go wrong?� No global consideration of how good or bad the set will be
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Weighted version� Each set S ∈ F has a cost c(S)� Compute the number of elements per unit cost: (S ∩ U)/c(S)� At each step, select the S for which this is maximal



Running time of the algorithm� Polynomial in |X | and |F|� At most min(|X |, |F|) iterations of the loop� Loop body takes time O(|X ||F|)� Running time O(|X ||F|min(|X |, |F|))� Can be implemented in linear time O(
∑

S∈F |S|)
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Related problems� Given a graph G = (V, E)� Independent set: find the largest set V ′ of vertices such that there

is no edge between any two vertices in V ′� Glique: find the largest set of vertices V ′ such that all pairs of

vertices of V ′ are connected by an edge� Clique in G is an independent set in G = (V, V × V \E)



Related problems� Given a graph G = (V, E)� Vertex cover: find the smallest subset V ′ ⊆ V such that for each

edge (u, v) ∈ E we have u ∈ V ′ or v ∈ V ′
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Approximation algorithms� Consider a minimization problem� Instance I, cost of optimal solution α∗(I), approximate solution

with cost α(I)� The algorithm has approximation ratio c(n), if for all instances of

size at most n we have α(I) ≤ c(n)α∗(I)� The greedy algorithm has approximation ratio O(log n)

(i.e., d log n for some d).



Approximation algorithm for vertex cover� C = ∅;� Select a random edge (u, v)� C = C ∪ {u, v};� Remove all edges that are incident either with u or with v� Repeat until no edges remain
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Approximation guarantee� The result is a vertex cover (why?)� No two selected edges share an endpoint� For any edge (u, v) at least one of u and v has to belong to any

vertex cover� For any edge (u, v) at least one of u and v has to belong to the

optimal vertex cover� Thus α(G) ≤ 2α∗(G) for all G



Analysis of the greedy approximation algorithm for set cover� H(d) =
∑d

i=1 1/i: the ith harmonic number� Greedy approximation algorithm has approximation ratio H(s),

where s is the size of the largest set in F� (Trivial bound; s)� H(s) ≈ ln s, i.e., the bound is quite good (s ≤ |X |)
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Proof.� Source: Cormen et al., Introduction to Algorithms� Optimal set cover C∗ and the cover C produced by the greedy

algorithm� Si: the ith set selected by an algorithm� Cost of 1 (counting the number of sets)� Spread this among the elements covered for the first time by Si� Cost to item x is cx = (|Si \ (S1 ∪ . . . Si−1)|)
−1� Costs by set Si sum up to one� |C| =

∑
x∈X

cx



C∗ covers X

|C| =
∑

x∈X

cx ≤
∑

S∈C∗

∑

x∈S

cx

For any set S ∈ F we have (proof separate)

∑

x∈S

cx ≤ H(|S|)

Thus

|C| ≤
∑

S∈C∗

H(|S|)

and hence i

|C| ≤ C∗H(s)

where s = max{|S| : S ∈ F}
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Best collection problem� Given some concepts (rules etc.)� Find the best collection of k rules� For example, find the k sets whose union has maximum size� Maximization problem, quality f(C) of the result = number of

elements in ∪S∈CS� Simple approximation algorithm has bound

α ≥
e − 1

e
α∗



Submodular functions� The result is very general� Concepts F , task fo find the best subcollection C∗ ⊆ F of size k� Solution function f should satisfy for all C

f(C) ≥ 0

and for all C ⊆ D ⊆ F and S ∈ F

f(C ∪ {S}) − f(C) ≥ f(D ∪ {S}) − f(D)

i.e., the improvement obtained by adding S may not increase

when moving to a larger solution� f is submodular; the result holds for all such functions
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Greedy approximation algorithm� C = ∅� Gain of S in the context of C is f(C ∪ {S}) − f(C)� Select the concept S that has the highest gain� C := C ∪ {S}� Repeat until C has k elements



Basic theorem

Let C∗
k

be the optimal set of k concepts

Let Ci be the ith set formed by the greedy algorithm.

Assume

f(Ci) − f(Ci−1) ≥
1

k
(f(C∗

k) − f(Ci−1))

Then

f(Ck) ≥
e − 1

e
f(C∗

k)

Proof. Separate.
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Why does the assumption hold?

f(Ci) − f(Ci−1) ≥
1

k
(f(C∗

k) − f(Ci−1))

f is submodular

the greedy approximation algorithm

The concept Ci \ Ci−1 is the one that maximizes the gain.

(Something open here.)



Applications� Which functions are submodular?� The concepts should not have interaction� Variable selection?
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Some experiments

10000 rows, 100 variables, each true with probability 0.1

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

The index of the variable

N
um

be
r 

of
 u

nc
ov

er
ed

 r
ow

s 
th

e 
va

ria
bl

e 
co

ve
rs



0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

The index of the variable

lo
g1

0(
N

um
be

r 
of

 u
nc

ov
er

ed
 r

ow
s 

th
e 

va
ria

bl
e 

co
ve

rs
)

Algorithmic Methods of Data Mining, Fall 2005, Covering problems 27

0 10 20 30 40 50 60 70 80 90 100
1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

The index of the variable

T
ot

al
 n

um
be

r 
of

 c
ov

er
ed

 r
ow

s



Other dataset

European mammals: 2183 rows, 124 variables (presence/absence in a

grid)
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Retail data, 88162 rows, 1000 columns
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