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Clustering aggregation

� Given a set of clusterings or a set of categorical variables� How to combine them to a single clustering?

�

C1 C2 C3 C

v1 1 1 1 1

v2 1 2 2 2

v3 2 1 1 1

v4 2 2 2 2

v5 3 3 3 3

v6 3 4 3 3� Gionis, Mannila, Tsaparas: Clustering aggregation, ACM

Transactions on Knowledge Discovery from Data 1, 1 (2007)
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Why?

� Different clustering algorithms produce different answers; which

one to believe?� Clustering categorical data: no natural similarity measures
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Definitions

� n objects V = {v1, . . . , vn}.� A clustering C of V is a partition of V into k disjoint sets

C1, . . . , Ck� The k sets C1, . . . , Ck are the clusters of C.� C(v) the label of the cluster to which the object v belongs, i.e.,

C(v) = j if and only if v ∈ Cj� m clusterings: Ci to denote the ith clustering� ki for the number of clusters of Ci
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How to compare two clusterings?

� u and v in V�

du,v(C1, C2) =















1 if C1(u) = C1(v) and C2(u) 6= C2(v),

or C1(u) 6= C1(v) and C2(u) = C2(v),

0 otherwise.�

dV (C1, C2) =
∑

(u,v)∈V ×V

du,v(C1, C2).
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Problem definition

Problem 1 (Clustering aggregation) Given a set of objects V and

m clusterings C1, . . . , Cm on V , compute a new clustering C that

minimizes the total number of disagreements with all the given

clusterings, i.e., it minimizes

D(C) =

m
∑

i=1

dV (Ci, C).

Example

Equivalent to finding the “center” of the clusterings Ci with respect to

the measure dV
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The distance is a metric

Observation 1

dV (C1, C3) ≤ dV (C1, C2) + dV (C2, C3)

Why?

Show that for each pair (u, v) we have

du,v(C1, C3) ≤ du,v(C1, C2) + du,v(C2, C3).
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Correlation clustering

� A slightly more general problem� Problem 2 (Correlation clustering) Given a set of objects V ,

and distances Xuv ∈ [0, 1] for all pairs u, v ∈ V , find a partition C

for the objects in V that minimizes the score function

d(C) =
∑

(u,v)
C(u)=C(v)

Xuv +
∑

(u,v)
C(u) 6=C(v)

(1 − Xuv). (1)
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Clustering aggregation is a special case

� Xuv = 1
m

· |{i 1 ≤ i ≤ m and Ci(u) 6= Ci(v)}|� The fraction of clusterings that assign the pair (u, v) into different

clusters� For any clustering C, if C places u, v in the same cluster it will

disagree with mXuv of the original clusterings� If C places u, v in different clusters it will disagree with the

remaining m(1 − Xuv) clusterings.� For any clustering C m · d(C) =
∑m

i=1 dV (C, Ci) = D(C),
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Triangle inequality

Observation 2 For all u, v and w in V , we have that

Xuw ≤ Xuv + Xvw.
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Algorithms for clustering aggregation

� What types of algorithms would we like to find?� Simple� Good in practice� Methods about which we can say something
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BestClustering algorithm

� Given m clusterings C1, . . . , Cm� BestClustering finds the input clustering Ci that minimizes

the total number of disagreements D(Ci)� Can be implemented to work in time O(m2n)
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What can be said about the algorithm?

� Does not really aggregate� Just selects the existing clustering that is most central� Score is no more than 2 time the optimum� Why?� Not very good in practice
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Balls algorithm

� Works for the correlation clustering problem (and thus also for the

clustering aggregation problem)� Try to find a set of vertices that are close to each other and far

from other vertices� Such a set is a cluster� How to find such a set? Lots of possible sets� Triangle inequality, again
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The algorithm

� Pick the first unclustered node u in some ordering� Find the set of nodes B that are at a distance of at most 1/2

from u� Compute the average distance d(u, B) of the nodes in B to node u� If d(u, B) ≤ α then the nodes in B ∪ {u} are considered to form a

cluster;� Otherwise, node u forms a singleton cluster.
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Properties of the algorithm

� Ifα = 1
4 , the cost of solution produced by the Balls algorithm is

guaranteed to be at most 3 times the cost of the optimal

clustering.� Not very good in practice� α = 2/5 seems better� Complexity: O(mn2) for computing the distances Xuv, O(n2) for

running the algorithm
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The Agglomerative algorithm

� Correlation clustering problem� Agglomerative clustering algorithm� Start with all nodes in singleton clusters� Merge the two clusters with the smallest cost� Cost: the average weight of edges between clusters� If this is less than 1/2, merge; otherwise, stop
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The Furthest algorithm

� Correlation clustering� In the beginning all nodes are in a single cluster� Find the pair of clusters that are furthest apart� Make them new cluster centers� Reassign points to the closest cluster center� Find the node that is furthest away from existing centers; repeat� If the cost is lower that in the previous step, continue, otherwise,

the result from the previous step is the answer
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Properties of the algorithm

� O(mn2) for creating the weights� O(k2n) for running the algorithm; k is the number of clusters

created
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The LocalSearch algorithm

� A heuristic that can be applied on top of any correlation clustering

method� Start with some clustering� For each node: find if the cost would improve if the node were

moved to another cluster or made into a singleton cluster� Iterate
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Efficient implementation

� Cost d(v, Ci) of assigning a node v to a cluster Ci

d(v, Ci) =
∑

u∈Ci

Xvu +
∑

u∈Ci

(1 − Xvu).

� The first term is the cost of merging v in Ci� The second term is the cost of not merging node v with the nodes

not in Ci
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� More efficient formulation: for every Ci we compute and store

M(v, Ci) =
∑

u∈Ci
Xvu and the size of the cluster |Ci|.�

d(v, Ci) = M(v, Ci) +
∑

j 6=i

(|Cj | − M(v, Cj))� The cost of assigning node v to a singleton cluster is
∑

j(|Cj | − M(v, Cj)).� Given the distance matrix Xuv (takes time O(mn2)� The running time of the LocalSearch algorithm is O(Tn2)� T is the number of local search iterations
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Algorithm k I(%) ED

Class labels 2 0 34,184

Lower bound 28,805

BestClustering 3 15.1 31,211

Agglomerative 2 14.7 30,408

Furthest 2 13.3 30,259

Ballsα=0.4 2 13.3 30,181

LocalSearch 2 11.9 29,967

ROCKk=2,θ=0.73 2 11 32,486

LIMBOk=2,φ=0.0 2 11 30,147

Results on Votes dataset. k is the number of clusters, I is the impurity

index, and ED is the disagreement error. The lower bound on ED is

computed by considering an algorithm that merges all edges with weight less

than 1

2
, and splits all edges with weight greater than 1

2
.
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Large datasets

� The algorithms typically have a running time of O(mn2)� For large values of n this is too much� Sampling algorithm: take a sample, do clustering aggregation� Postprocessing: for each node (row), see which cluster it fits best

or whether it should be a cluster of its own� In the same way as in the LocalSearch algorithm


