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Clustering

• Task: group observations into groups so that the observations

belonging to the same group are similar, whereas observations in

different groups are different

• Lots and lots of research in various areas

• Just scratching the surface here
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Topics

• Basic remarks

• k-means clustering

• kmeans++

• Hierarchical clustering

• Kleinberg’s impossibility theorem
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Basic questions?

• What does ”similar” mean?

• What is a good partition of the objects? I.e., how is the quality of

a solution measured?

• How to find a good partition of observations?
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What does ”similar” mean?

• Some function of the attribute values of the observations

• Usual approach: Lp distance

L((x1, . . . , xn), (y1, . . . , yn)) = (
∑

i

(xi − yi)
p)1/p

• Easy in 1-dimensional real case

• Already 2 dimensions cause problems: how to weigh the different

dimensions?

• Lots of problems
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Clustering, so what?

• Often a clustering gives lots of information

• Sometime not

• A cluster as such is not necessarily very useful

• Additional analyses are needed

• Characterizing the clusters

• Using them for something
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One problem formulation: minimum k-center

• Input: Complete graph G = (V, E) and distances d(vi, vj) ∈ N

satisfying the triangle inequality.

• Solution: A k-center set, i.e., a subset C ⊆ V with |C| = k.

• Score function: The maximum distance from a vertex to its

nearest center

max
v∈V

min
c∈C

d(v, c).

• This problem is NP-hard

• Can be approximated within a factor of 2
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Another formulation: k-means problem

• Given a set X of n points in Rd and an integer k

• Task: choose a set C ⊆ Rd of k points minimizing

φ =
∑

x∈X

min
c∈C

||x − c||2.
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Properties of the problems

• There is always a solution

• Even if there is no structure in the data
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What is the correct value of k?

• Model selection problem

• Difficult task

• Not covered in this course
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Algorithmic properties of the k-means problem

• NP-hard if the dimension is at least 2

• Thus finding an exact solution is probably not feasible

• Dimension 1 is solvable in polynomial time by dynamic

programming

• A simple iterative algorithm works quite well
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k-means algorithm

• One way of solving the k-means problem

• Randomly pick K cluster centers C = {c1, . . . , ck}

• For each i, set the cluster i to be the set of points in X that are

closer to ci than they are to cj for all j 6= i

• For each i let ci be the center of cluster i

• Repeat until convergence
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Examples

Treatment follows ”k-means++: The Advantages of Careful Seeding

David Arthur and Sergei Vassilvitskii”, SODA 2006

See

www.stanford.edus̃ergeiv/slides/BATS-Means.pdf
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Example
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Example
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Example

1000 points from {0, 1}100

clustered twice into 4 clusters, cluster ids plotted

Should look like this looks like this
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Why?

Random points in 100-dimensional 0-1 space are about equivdistant

from each other
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Properties of the K-means algorithm

• Finds a local optimum

• Converges often quite quickly

• Sometimes slow convergence

• For high dimensions the choice of initial points can have a large

influence
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Why does this converge?

• Why does changing the centers decrease φ?

• Let S be a set of points with center of mass c(S), and let z be an

arbitrary point. Then
∑

x∈S

||x − z||2 −
∑

x∈S

||x − c(S)||2 = |S|||c(S) − z||2.

• S: a current cluster, z its original center
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k-means++

• Just change the initialization a little bit

• D(x): distance from point x ∈ X to an already selected center

• For i = 2, . . . , k, select c1 uniformly at random from X

• Select as center ci a point x′ from X , with probabilities

D(x′)2∑
x∈X D(x)2

• Use the normal k-means algorithm
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Does this make a difference?

• It does

• Suprisingly, this simple change makes the algorithm theoretically

and practically better

• φOpt: the cost of the optimal clustering COpt (this cannot be

found efficiently)

• Let C be the result of k-means++, and let φ be the corresponding

cost function

• Then

E(φ) ≤ 8(ln k + 2)φOpt

• Not too far from the optimal value
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Proving the bound

• First cluster: easy

• Other clusters: harder, but not very difficult
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What does the result mean?

Empirical results
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Hierarchical clustering

• Merge sets of points or divide sets of points

• Agglomerative or divisive

• Dendrograms (figures)
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Agglomerative clustering

for i = 1, . . . , n let Ci = {x(i)};

while there is more than one cluster left do

let Ci and Cj be the clusters

minimizing the distance D(Ck, Ch) between

any two clusters;

Ci = Ci ∪ Cj ;

remove cluster Cj ;

od;
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Complexity

• Quadratic, at least, in the number of points

• Not usable for large sets of data
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What is the distance between clusters?

• How to define the distance between two clusters for hierarchical

clustering?

• Two sets of points

• Lots of alternatives

• Actually quite difficult to define a metric
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Single-link distance

d(x, y) the distance between objects x and y

Dsl(Ci, Cj) = min
x,y

{d(x, y) | x ∈ Ci, y ∈ Cj}, (1)

chaining: long, elongated clusters
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Complete link

Furthest distance

Dfl(Ci, Cj) = max
x,y

{d(x, y) | x ∈ Ci, y ∈ Cj}, (2)

leads to equal colume (or at least diameter)
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Other measures

• For vectors

• the centroid measure (the distance between two clusters is the

distance between their centroids)

• the group average measure (the distance between two clusters is

the average of all the distances between pairs of points, one from

each cluster)

• Ward’s measure for vector data (the distance between two clusters

is the difference between the total within cluster sum of squares

for the two clusters separately, and the within cluster sum of

squares resulting from merging the two clusters discussed above)
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Divisive methods

• start with a single cluster composed of all of the data points

• split this into components

• continue recursively

• Monothetic divisive methods split clusters using one variable at a

time

• Polythetic divisive methods make splits on the basis of all of the

variables together

• any intercluster distance measure can be used

• computationally intensive, less widely used than agglomerative

methods
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Kleinberg’s impossibility theorem

• John Kleinberg, An impossibility theorem for clustering, NIPS

2002

• Clustering methods based on pairwise distances

• Three properties for clustering methods

• No algoritm can have all three
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Computational task

• A clustering function operates on a set S of n points

• No underlying space; S = {1, 2, . . . , n}

• Distance function: d : S × S → R with d(i, j) ≥ 0,

d(i, j) = d(j, i), and d(i, j) = 0 only if i = j

• (Metric: additionally have d(i, j) + d(j, k) ≥ d(i, k))

• Clustering function f : f(S, d) = Γ, where Γ is a partition of S

• (A partition)
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Scale invariance

α > 0; distance function αd has values (αd)(i, j) = αd(i, j)

For any d and for any α > 0 we have f(d) = f(αd)
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Richness

The range of f is equal to the set of partitions of S

I.e., for any S and any partition Γ of S there is a distance function d

on S such that f(S, d) = Γ
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Consistency

Shrinking distances between points inside a cluster and expanding

distances between points in different clusters does not change the

result.

Γ a partition of S

d, d′ two distance functions on S

d′ is a Γ-transformation of d, if

• for all i, j ∈ S in the same cluster of Γ we have d′(i, j) ≤ d(i, j)

• for all i, j ∈ S in the different cluster of Γ we have

d′(i, j) ≥ d(i, j)

Consistency: if f(S, d) = Γ and d′ is a Γ-transformation of d,

then f(S, d′) = Γ
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Examples

• Agglomerative clustering with single-link

• Repeatedly merge cluster whose distance is minimum

• Continue until a stopping criterion is met

– k-cluster stopping criterion: continue until there are k

connected components

– distance-r stopping criterion: continue until all distances

between clusters are larger than r

– scale-α stopping criterion: let ρ∗ be the maximum pairwise

distance; continue until all distances are larger than αρ∗
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Examples, cont.

• Single link with k-cluster stopping criterion satisfies

scale-invariance and consistency

• Single link with distance-r stopping criterion satisfies richness and

consistency

• Sigle link with scale-α stopping criterion satisfies richness and

scale-invariance
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Theorem

For each n ≥ 2 there is no clustering function that satisfies

scale-invariance, richness, and consistency
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Proof of theorem

A partition Γ′ is a refinement of partition Γ, if each set C ′ ∈ Γ′ is

included in some set C ∈ Γ

A partial order between partitions: Γ′ ≤ Γ

Antichain of partitions: collection of partitions such than no one is a

refinement of others

Theorem: If a clustering function f satisfies scale-invariance and

concistency, then the range of f is an antichain
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Γ-forcing

• partition Γ

• d (a, b)-conforms to Γ, if for all points i, j in the same cluster of Γ

d(i, j) ≤ a, and for all points i, j in different clusters of Γ

d(i, j) ≥ b

• given a clustering function f

• (a, b) is Γ-forcing, if for all d that (a, b)-conform to Γ we have

f(S, d) = Γ
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Forcing, cont.

• Assume f satisfies consistency; let Γ ∈ Range(f)

• Claim: there are a < b such that (a, b) is Γ-forcing

• Γ in range of f : there is d such that f(S, d) = Γ

• a′=minimum distance of points in the same cluster in Γ

• b′=maximum distance of points in different clusters in Γ

• Choose a < b such that a < a′ and b < b′

• If d′ (a, b)-conforms to Γ, then d is a Γ-transformation of d

• By consistency f(d′) = Γ

• Thus (a, b) is Γ-forcing
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Antichains

• Assume f satisfies scale-invariance

• Let Γ0 and Γ1 be possible results of f , and let Γ0 be a refinement

of Γ1

• Show that this leads to contradiction

• (a0, b0) Γ0-forcing, (a1, b1) Γ1-forcing

• Let a2 < a1, choose ǫ so that 0 < ǫ < a0a2b
−1
0

• Construct a d such that

– For i, j in same cluster of Γ0 we have d(i, j) ≤ ǫ

– For i, j in same cluster of Γ1 but not in Γ0 we have

a2 ≤ d(i, j) ≤ a1

– For i, j in different clusters of Γ1 d(i, j) ≥ b1
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• d (a, b)-conforms to Γ1, and thus f(S, d) = Γ1

• α = b0a
−1
2 , and let d′ = αd

• scale-invariance: f(d′) = f(d) = Γ1

• i, j in same cluster of Γ0 we have

d′(i, j) ≤ ǫb0a
−1
2 < a0

• i, j in different clusters of Γ0 we have

d′(i, j) ≥ a2b0a
−1
2 = b0

• d′ (a0, b0) conforms to Γ0, and thus f(S, d′) = Γ0 6= Γ1,

contradiction


