
1

Subsequences and substrings

• Change the episode definition slightly: consecutive requirement

• For episode α to appear, require that all event types in α must

occur one after the other, with no extra events in between

• If α is the parallel episode AB, then it occurs only if in the

sequence we see AB or BA, close enough to each other

• ACB will not count as an occurrence

• With this requirement serial episodes are more or less equivalent

to substrings

• The first definition for episodes is subsequences
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Finding frequently occurring substrings

• Suffix tries: a very efficient data structure
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5. Complexity of finding frequent patterns

• How difficult is it to find frequent patterns?

• Examples of some simple theoretical analyses

• Very simple lower bounds

• Border of a theory

• Guess-and-correct algorithm

• Borders and hypergraph transversals
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Complexity of finding frequent sets

• data set with n rows, p attributes

• Find all frequent sets for some frequency threshold

• What is the complexity+

• We have to read the whole dataset ⇒ Ω(n) (at least linear in n)

• The result has to be output: in the worst case 2p frequent sets,

each of size from 1 to p ⇒ Ω(2p)

• The levelwise algorithm takes time O(npC), where C is the total

number of candidates considered
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A very simple lower bound

• Sometimes finding frequent sets takes exponential time in the

number of attributes

• But is this just because the output can be large

• Is this the only reason why the problem can be exponential?

• No

• Model of computation: questions of the form “is X frequent?”

• How many such questions have to be asked to identify the

answer?

• We don’t have to output the answer
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A very simple lower bound, cont.

• Simple case: p attributes, only one maximal frequent set, with size

k

•

(

p

k

)

different possible answers

• Each question “Is X frequent?” provides 1 bit of information
•

log

(

m

k

)

≈ k log(m/k)

questions are needed to identify the single frequent set
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A very simple lower bound, cont.

• Simple case: p attributes, many maximal frequent sets, each of

size k

• S =

(

p

k

)

different possible maximal frequent sets

• T = 2S different collections

• Each question “Is X frequent?” provides 1 bit of information
•

log 2S = S =

(

p

k

)

questions are needed

• If k = p/2, then

(

p

k

)

is exponential in p

• Thus identifying the answer can be difficult
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Verifying the answer

• Suppose somebody tells us that the frequent sets of a dataset are

ABC, CD, and BCE, and all their subsets (attributes ABCDE)

• Which questions should we ask to verify that this is indeed true?

• Test that ABC, CD, and BCE indeed are frequent

• If so, the claim is at least partly true

• There might be some other sets that could still be frequent
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Verifying the answer, cont.

• ABC, CD, and BCE are frequent

• The claim is that no set other than the subsets of these are

frequent

• What is the smallest collection of sets that we should test to verify

this?

• Claim: if some other set is frequent, then one of AE, AD, DB,

DE is frequent

• Why?
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Why?

• If something else than ABC, CD, and BCE and their subsets is

frequent, then that set X cannot be a subset of any of those

• The minimal sets X that are not subsets of any of ABC, CD,

BCE

• The minimal sets that intersect the complements of ABC, CD,

BCE

• The minimal sets that intersect DE, ABE, AD

• These are AE, AD, DB, DE
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The border of a collection F of frequent sets

• A collection F of frequent sets

• Closed under subsets

• positive border Bd+(F): the sets that are in F , but whose all

proper supersets are outside F

• The negative border Bd−(F): sets that are not in F , but whose

all proper subsets are in F
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Example

• Above we had F = subsets of ABC, CD, BCE, i.e.,

F = {∅, A, B, , C, D, E, AB, AC, BC, CD, BE, ABC,BCE}

• Bd+(F) = {ABC, CD, BCE}

• Bd−(F) = {AE, AD, DB, DE}
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Another example

• R = {A, . . . , F}

{{A}, {B}, {C}, {F}, {A, B}, {A, C}, {A, F}, {C, F}, {A, C, F}}.

• The negative border

Bd−(F) = {{D}, {E}, {B, C}, {B, F}}

• The positive border, in turn, contains the maximal frequent sets,

i.e.,

Bd+(F) = {{A, B}, {A, C, F}}
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Verification problem

• Verifying that F is the collection of frequent sets of a database

requires

|Bd+(()F)| + |Bd−(()F)|

queries of the form “Is X frequent?”
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How to compute the negative border?

• Given a collection of frequent sets

• Computing the positive border is quite simple: just find the

maximal elements

• Computing the negative border is more difficult

• Negative border: the minimal sets that intersect all the

complements of the sets in the positive border

• Hypergraph transversal problem

• An interesting combinatorial question
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When computing frequent sets

• Candidates = frequent sets + negative border

• Why?
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Examples: random data sets

Independent attributes, probability of a 1 is p

p min fr |F| |Bd+(F)| |Bd−(F)|

0.2 0.01 469 273 938

0.2 0.005 1291 834 3027

0.5 0.1 1335 1125 4627

0.5 0.05 5782 4432 11531

Experimental results with random data sets.
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min fr |F| |Bd+(F)| |Bd−(F)|

0.08 96 35 201

0.06 270 61 271

0.04 1028 154 426

0.02 6875 328 759

Experimental results with a real data set.
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Borders for other types of patterns

• Can be defined in exactly the same way

• Result of finding frequent patterns is a collection of patterns

closed under generalizations

• Positive border: most specific patterns in the collection

• Negative border: most general patterns not in the collection



Algorithmic Methods of Data Mining, Fall 2007, Chapter 5: Complexity of finding frequent patterns20

Example for strings

• P: substrings over an alphabet
∑

• q: how frequently the substring occurs

• (substrings vs. subsequences ≈ sequential episodes)

•
∑

= {a, b, c}

• F = {a, b, c, ab, bc, abc, cb}

• positive border {abc, cb}

• negative border {ca, aa, bb, ba, cc, ac}(?)
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Example for episodes

A B D
A

B

A

D

B

D

A

B

D

A B B A A D D B

A B

D

A D

B

D B

A
A D B

A collection F(s, win, min fr) of frequent episodes.
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B A A D B

The positive border Bd+(F(s, win, min fr)).
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C D A B D

B A

D

The negative border Bd−(F(s, win,min fr)). (Tends to be tricky to check;

is this correct?)
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Complexity of the levelwise algorithm

• The levelwise algorithm compute the frequency of the frequent

patterns and the patterns in the negative border
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The guess-and-correct algorithm

• Levelwise search: safe but sometimes slow

• Especially if there are frequent patterns that are far from the

bottom of the specialization relation

• An alternative: start finding F from an initial guess S ⊆ P, and

then correcting the guess by looking at the database

• If the initial guess is good, few iterations are needed to correct the

result


