#### Approximate counting: count-min data structure

G. Cormode and S. Muthukrishhan: An improved data stream summary: the count-min sketch and its applications. Journal of Algorithms 55 (2005) 58-75.

- Problem definition
- 2-independent hash functions
- Count-min data structures

#### Problem definition

- A large set U of potential identifiers (e.g., IP addresses or sentences)
- Keep counts associated with each  $u \in U$
- For u ∈ U and integer c operations inc(u, b) and dec(u, b): increase or decrease the count associated with u by b; assume the counts stay nonnegative
- Queries: approximate counts C(u): what is the count associated to u?
- Initially, C(u) = 0 for all  $u \in U$ ;  $S = \sum_{u \in U} C(u)$
- Heavy hitters: which items u satisfy  $C(u) \ge \alpha S$  (approximately)
- U is so large that we cannot keep an array element for each u seen in the query stream

#### Basic idea

- Keep several hash tables  $A_i$ ,  $i = 1, \ldots, k$  and hash functions  $h_i$
- Implement inc(u, c) by doing  $A_i[h_i(u)] = A_i[h_i(u)] + c$  and dec(u, c) by doing  $A_i[h_i(u)] = A_i[h_i(u)] c$
- Answer question C(u)? by

 $min_{i=1}^k A_i[h_i(u)]$ 

• Heavy hitters: use these counts to keep a heap structure

#### Families of universal hash functions

- U the universe with  $|U| \ge n$ , and  $V = \{0, 1, \dots, n-1\}$
- $\mathcal{H}$ : a family of functions  $h: U \to V$
- $\mathcal{H}$  is 2-universal, if for any  $u_1, u_2 \in U$  and for a uniformly selected function  $h \in \mathcal{H}$  we have

$$Pr(h(u_1) = h(u_2)) \le \frac{1}{n}.$$

- Thus collisions are about as rare as they can be
- Note that h is selected at random, and that the claim holds for all  $u_1, u_2$
- Also called pairwise independent hash functions

#### A simple universal family

- Assume  $U = \{0, ..., m 1\}$  and  $V = \{0, 1, ..., n 1\}$
- Let  $p \ge m$  be prime
- $h_{a,b}(u) = ((ax+b) \mod p) \mod n$
- Family

$$\mathcal{H} = \{h_{a,b} | 1 \le a \le p - 1, 0 \le b \le p\}$$

is 2-universal.

#### Count-min data structure

- Parameters  $\varepsilon$  (the accuracy we want to have) and  $\delta$  (the certainty with which we reach the accuracy)
- $w = \lceil e/\varepsilon \rceil$  (here e is the base of In)
- $d = \lceil \ln(1/\delta) \rceil$
- Array A of size  $d\times w,$  initially 0
- Pairwise independent hash functions  $h_1, \ldots, h_d : \{0, \ldots, m-1\} \rightarrow \{1, \ldots, w\}$

### Update procedure and answering count queries

- inc(u, c) by doing  $A[i, h_i(u)] = A[i, h_i(u)] + c$  for all  $i = 1, \ldots, d$
- $dec(u, c) A[i, h_i(u)] = A[i, h_i(u)] c$  for all i = 1, ..., d
- Answer C(u) by returning  $\hat{c} = \min_j A[j, h_j(u)]$

# Example

| ε     | $\delta$ | w    | d | wd    |
|-------|----------|------|---|-------|
| 0.1   | 0.1      | 28   | 3 | 84    |
| 0.1   | 0.01     | 28   | 5 | 140   |
| 0.1   | 0.001    | 28   | 7 | 196   |
| 0.01  | 0.1      | 272  | 3 | 816   |
| 0.01  | 0.01     | 272  | 5 | 1360  |
| 0.01  | 0.001    | 272  | 7 | 1904  |
| 0.001 | 0.001    | 2719 | 7 | 19033 |

## Properties

- Estimates are never too small:  $C(u) \leq \hat{c}$
- With probability at least  $1 \delta$

 $\hat{c} \leq C(u) + \varepsilon S$ 

- What does this mean? If S is small, the estimates are accurate, if S is large, only counts that are large are estimated accurately.
- Recall  $S = \sum_{u \in U} C(u)$

# Proof

- Indicator variables I(u, j, v): equal to 1 if and only if  $u \neq v$  and  $h_j(u) = h_j(v)$ , 0 otherwise
- Pairwise independence:

$$E(I(u, j, v)) = Pr(h_j(u)) = h_j(v)) \le 1/w = \varepsilon/e.$$

- $X(u,j) = \sum_{v \in U} I(u,j,v)C(v)$
- $A[j, h_j(u)] = C(u) + X(u, j)$
- Thus  $C(u) \leq \hat{c} = \min_j A[j, h_j(u)]$

$$E(X(u,j) = E(\sum_{v \in U} I(u,j,v)C(v)) \le \sum_{v \in U} C(v)E(I(u,j,v)) \le S\frac{\varepsilon}{e}$$

Markov's inequality (but is pairwise independence enough?)

$$\begin{aligned} Pr(\hat{c} > C(u) + \varepsilon S &= Pr(\forall j : A[j, h_j(u)] > C(u) + \varepsilon S) \\ &= Pr(\forall j : C(u) + X(u, j) > C(u) + \varepsilon S) \\ &= Pr(\forall j : X(u, j) > \varepsilon S) \\ &\leq Pr(\forall j : X(u, j) > eE(X(u, j))) \\ &= \bigcap_{j=1}^{d} Pr(X(u, j) > eE(X(u, j))) \\ &< (\frac{1}{e})^d = e^{-d} \leq \delta \end{aligned}$$

Answering heavy hitter queries

- Maintain S all the time
- When seeing inc operations, see if the frequency seems to be high enough
- Decreasing the counts makes things more difficult

# Chapter 3: Frequent sets and association rules

#### Chapter 3. Frequent sets and association rules

How to count frequently occurring subsets in data?

- 1. Problem formulation
- 2. Rules from frequent sets
- 3. Finding frequent sets
- 4. Experimental results
- 5. Related issues
- 6. Rule selection and presentation
- 7. Theoretical results

# Example

 Customer 1: mustard, sausage, beer, chips Customer 2: sausage, ketchup Customer 3: beer, chips, cigarettes
 ...

```
Customer 236513: coke, chips
```

- A set of products  $X\{$  mustard, chips  $\}$
- Frequency f(X) of X in the dataset: the fraction of rows that have all elements of X
- Basic task: find all sets X such that f(X) > c for a given constant c
- A frequent set

#### Problem formulation: data

- a set R of items
- a 0/1 dataset r over R (or 0-1 relation) is a collection (or multiset) of subsets of R
- the elements of  $\boldsymbol{r}$  are called rows
- the number of rows in r is denoted by  $\left|r\right|$
- the size of r is denoted by  $||r|| = \sum_{t \in r} |t|$

| Row ID | Row                 |  |  |
|--------|---------------------|--|--|
| $t_1$  | $\{A, B, C, D, G\}$ |  |  |
| $t_2$  | $\{A, B, E, F\}$    |  |  |
| $t_3$  | $\{B, I, K\}$       |  |  |
| $t_4$  | $\{A, B, H\}$       |  |  |
| $t_5$  | ${E,G,J}$           |  |  |

Figure 1: An example 0/1 relation r over the set  $R = \{A, \ldots, K\}$ .

# Example

| Row ID | A | В | С | D | Е | F | G | Н | Ι | J | K |
|--------|---|---|---|---|---|---|---|---|---|---|---|
| $t_1$  | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
| $t_2$  | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
| $t_3$  | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 |
| $t_4$  | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| $t_5$  | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 |

a 0/1 relation over the schema  $\{A, \ldots, K\}$ 

## Notation

- Sometime we write just ABC for  $\{A, B, C\}$  etc.
- Attributes = variables
- An observation in the data is
  - A set of attributes, or
  - A row of  $0 {\rm s}$  and  $1 {\rm s}$

#### Patterns: sets of items

- r = 0/1 relation over R
- $X \subseteq R$
- X matches a row  $t \in r$ , if  $X \subseteq t$
- the set of rows in r matched by X is denoted by  $\mathcal{M}(X, r)$ , i.e.,  $\mathcal{M}(X, r) = \{t \in r \mid X \subseteq t\}.$
- the *(relative)* frequency of X in r, denoted by fr(X, r), is

$$\frac{|\mathcal{M}(X,r)|}{|r|}.$$

• Given a frequency threshold  $min_fr \in [0, 1]$ , the set X is frequent, if  $fr(X, r) \ge min_fr$ .

#### Frequent sets

- given R (a set), r (a 0/1 relation over R), and min\_fr (a frequency threshold)
- the collection of frequent sets  $\mathcal{F}(r, \min_{r} fr)$

$$\mathcal{F}(r, \min_{r}) = \{ X \subseteq R \mid fr(X, r) \ge \min_{r}\},\$$

• In the example relation:  $\mathcal{F}(r, 0.3) = \{ \emptyset, \{A\}, \{B\}, \{E\}, \{G\}, \{A, B\} \}$ 

### Finding frequent sets

- Task: given R (a set), r (a 0/1 relation over R), and min\_fr (a frequency threshold), find the collection of frequent sets
   \$\mathcal{F}(r, min\_fr)\$ and the frequency of each set in this collection.
- Count the number of times combinations of attributes occurs in the data

## Why find frequent sets?

- Find all combinations of attributes that occur together
- They might be interesting
- Positive combinations only
- Provides a type of summary of the data

#### When is the task sensible and feasible?

- If  $min_fr = 0$ , then all subsets of R will be frequent, and hence  $\mathcal{F}(r, min_fr)$  will have size  $2^{|r|}$
- Very large, and not interesting
- If there is a subset X that is frequent, then all its subsets will be frequent (why?)
- Thus if a large set X is frequent, there will be at least  $2^{|X|}$  frequent sets
- The task of finding all frequent sets is interesting typically only for reasonably large values of *min\_fr*, and for datasets that do not have large subsets that would be very strongly correlated.

## Finding frequent sets

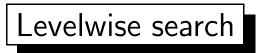
- trivial solution (look at all subsets of R) is not feasible
- iterative approach
- first frequent sets of size 1, then of size 2, etc.
- a collection  $C_l$  of candidate sets of size l
- then obtain the collection  $\mathcal{F}_l(r)$  of frequent sets by computing the frequencies of the candidates from the database
- minimize the number of candidates?

- monotonicity: assume  $X' \subseteq X$
- then  $\operatorname{fr}(X') \ge \operatorname{fr}(X)$
- if X is frequent then X' is also frequent
- Let X ⊆ R be a set. If any of the proper subsets X' ⊂ X is not frequent then (1) X is not frequent and (2) there is a non-frequent subset X'' ⊂ X of size |X| − 1.



 $\mathcal{F}_2(r) = \{\{A, B\}, \{A, C\}, \{A, E\}, \{A, F\}, \{B, C\}, \{B, E\}, \{C, G\}\}, \{C,$ 

- then  $\{A,B,C\}$  and  $\{A,B,E\}$  are the only possible members of  $\mathcal{F}_3(r)$  ,



- levelwise search: generate and test
- candidate collection:

 $\mathcal{C}(\mathcal{F}_l(r)) = \{ X \subseteq R | |X| = l+1 \text{ and } X' \in \mathcal{F}_l(r) \text{ for all } X' \subseteq X, |X'| = l \}.$ 

## Apriori algorithm for frequent sets

#### Algorithm

**Input:** A set R, a 0/1 relation r over R, and a frequency threshold *min\_fr*.

**Output:** The collection  $\mathcal{F}(r, \min_f r)$  of frequent sets and their frequencies.

```
Method:
1. C_1 := \{\{A\} \mid A \in R\};
2.
      l := 1;
3.
      while C_l \neq \emptyset do
4.
           // Database pass (Algorithm 35):
5.
           compute \mathcal{F}_l(r) := \{ X \in \mathcal{C}_l \mid fr(X, r) \geq min_fr \};
6.
           l := l + 1;
7.
           // Candidate generation (Algorithm 32):
8.
           compute C_l := C(\mathcal{F}_{l-1}(r));
      for all l and for all X \in \mathcal{F}_l(r) do output X and fr(X, r);
9.
```

## Correctness

- reasonably clear
- optimality in a sense?
- For any collection S of subsets of X of size l, there exists a 0/1 relation r over R and a frequency threshold min\_fr such that *F*<sub>l</sub>(r) = S and *F*<sub>l+1</sub>(r) = C(S).
- fewer candidates do not suffice

Additional information can change things...

- frequent sets:  $\{A, B\}$ ,  $\{A, C\}$ ,  $\{A, D\}$ ,  $\{B, C\}$ , and  $\{B, D\}$
- candidates:  $\{A, B, C\}$  and  $\{A, B, D\}$
- what if we know that  $fr(\{A, B, C\}) = fr(\{A, B\})$
- can infer  $fr(\{A, B, D\}) < min_fr$
- how?

#### Candidate generation

- how to generate the collection  $C(\mathcal{F}_l(r))$ ?
- trivial method: check all subsets
- compute potential candidates as unions  $X \cup X'$  of size l+1
- here X and X' are frequent sets of size l
- check which are true candidates
- not optimal, but fast
- collections of item sets are stored as arrays, sorted in the lexicographical order

#### Candidate generation algorithm

#### Algorithm

**Input:** A lexicographically sorted array  $\mathcal{F}_l(r)$  of frequent sets of size l.

**Output:**  $C(\mathcal{F}_l(r))$  in lexicographical order.

#### Method: 1. for all $X \in \mathcal{F}_l(r)$ do 2. for all $X' \in \mathcal{F}_l(r)$ such that X < X' and X and X' share their l-1lexicographically first items do 3. for all $X'' \subset (X \cup X')$ such that |X''| = l do 4. if X'' is not in $\mathcal{F}_l(r)$ then continue with the next X' at line 5. output $X \cup X'$ ;

## Correctness and running time

**Theorem 1** Algorithm 32 works correctly.

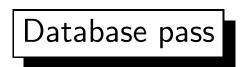
**Theorem 2** Algorithm 32 can be implemented to run in time  $O(l^2 |\mathcal{F}_l(r)|^2 \log |\mathcal{F}_l(r)|).$ 

# Optimizations

compute many levels of candidates at a single pass

$$\mathcal{F}_2(r) = \{\{A, B\}, \{A, C\}, \{A, D\}, \{A, E\}, \\ \{B, C\}, \{B, D\}, \{B, G\}, \{C, D\}, \{F, G\}\}\}$$

 $\begin{array}{lll} \mathcal{C}(\mathcal{F}_{2}(r)) &=& \{\{A, B, C\}, \{A, B, D\}, \{A, C, D\}, \{B, C, D\}\}, \\ \mathcal{C}(\mathcal{C}(\mathcal{F}_{2}(r))) &=& \{\{A, B, C, D\}\}, \text{ and} \\ \mathcal{C}(\mathcal{C}(\mathcal{C}(\mathcal{F}_{2}(r)))) &=& \emptyset. \end{array}$ 

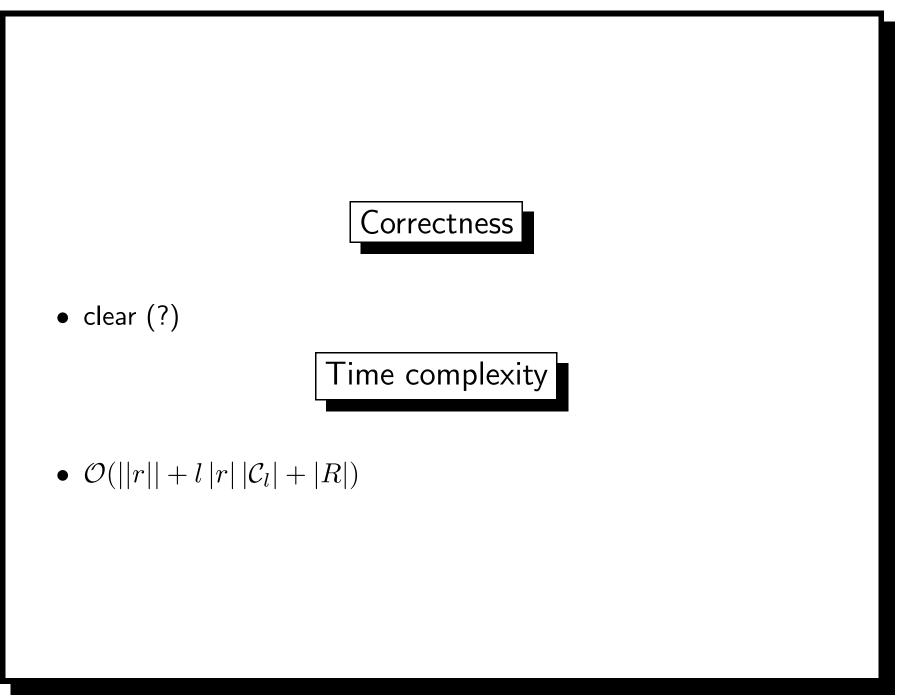


- go through the database once and compute the frequencies of each candidate
- thousands of candidates, millions of rows

```
Algorithm
Input: R, r over R, a candidate collection C_l \supseteq \mathcal{F}_l(r, \min_r), and \min_r.
Output: Collection \mathcal{F}_l(r, \min_r) of frequent sets and frequencies.
Method:
     // Initialization:
1.
     for all A \in R do A.is\_contained\_in := \emptyset;
2.
3.
     for all X \in C_l and for all A \in X do
4.
          A.is_contained_in := A.is_contained_in \cup \{X\};
5.
     for all X \in C_l do X.freq_count := 0;
6.
     // Database access:
7.
    for all t \in r do
8.
          for all X \in C_l do X.item_count := 0;
          for all A \in t do
9.
              for all X \in A.is_contained_in do
10.
                   X.item\_count := X.item\_count + 1;
11.
                   if X.item_count = l then X.freq_count := X.freq_count + 1;
12.
13.
     // Output:
     for all X \in \mathcal{C}_l do
14.
          if X.freq_count/|r| \ge min_fr then output X and X.freq_count/|r|;
15.
```

## Data structures

- for each  $A \in R$  a list  $A.is\_contained\_in$  of candidates that contain A
- For each candidate X we maintain two counters:
  - $X.freq\_count$  the number of rows that X matches,
  - $X.item\_count$  the number of items of X

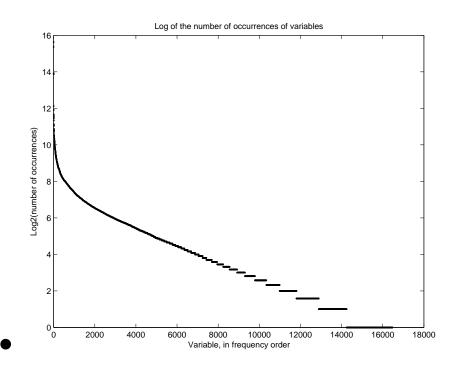


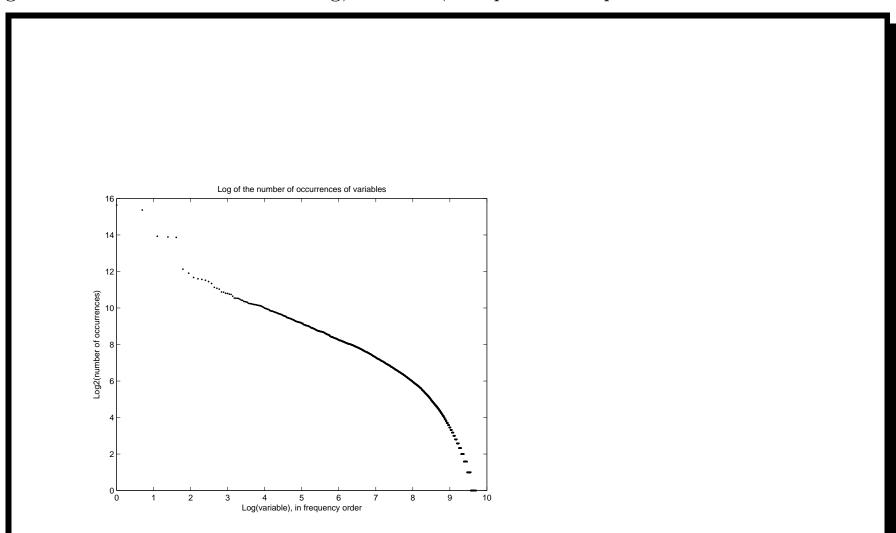
## Implementations

- Lots of them around
- See, e.g., the web page of Bart Goethals
- Typical input format: each row lists the numbers of attributes that are equal to 1 for that row

### Experimental results

- A retail transaction dataset, 88162 rows and 16470 columns, 908576 ones
- Rows: transactions, columns: products; completely anonymized





#### Number of frequent sets

• Number of frequent sets found for different thresholds

| Threshold | Sets | Time  |
|-----------|------|-------|
| 5000      | 15   | 0.97s |
| 2000      | 45   | 1.28s |
| 1000      | 135  | 1.65s |
| 500       | 468  | 1.92s |
| 400       | 699  | 2.14s |
| 300       | 1135 | 2.51s |
| 200       | 2191 | 3.87s |
| 100       | 6451 | 6.83s |

## Candidates and frequent sets

| Threshold | 5000  |   | 2000  | C  | 1000  | )  | 500   | )   |
|-----------|-------|---|-------|----|-------|----|-------|-----|
| Set size  | С     | F | С     | F  | С     | F  | С     | F   |
| 1         | 16470 | 5 | 16470 | 16 | 16470 | 56 | 16470 | 185 |
| 2         | 10    | 7 | 120   | 20 | 1540  | 49 | 17020 | 191 |
| 3         | 3     | 3 | 14    | 9  | 31    | 24 | 153   | 79  |
| 4         | 0     | 0 | 2     | 0  | 6     | 6  | 17    | 13  |
| 5         | 0     | 0 | 0     | 0  | 0     | 0  | 1     | 0   |
| 6         | 0     | 0 | 0     | 0  | 0     | 0  | 0     | 0   |

| Threshold | 400                               | 0                                                                                                                     | 300                                                                                                                                                                          | 0                                                                                                                                                                                                                                                                                     | 200                                                                       |                                                                                              | 100                                                                                                       |                                                                                                                                 |
|-----------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| Set size  | С                                 | F                                                                                                                     | С                                                                                                                                                                            | F                                                                                                                                                                                                                                                                                     | С                                                                         | F                                                                                            | С                                                                                                         | F                                                                                                                               |
| 1         | 16470                             | 274                                                                                                                   | 16470                                                                                                                                                                        | 418                                                                                                                                                                                                                                                                                   | 16470                                                                     | 807                                                                                          | 16470                                                                                                     | 1857                                                                                                                            |
| 2         | 37401                             | 284                                                                                                                   | 87153                                                                                                                                                                        | 471                                                                                                                                                                                                                                                                                   | 325221                                                                    | 895                                                                                          | 1723296                                                                                                   | 2785                                                                                                                            |
| 3         | 239                               | 117                                                                                                                   | 413                                                                                                                                                                          | 206                                                                                                                                                                                                                                                                                   | 867                                                                       | 411                                                                                          | 3430                                                                                                      | 1475                                                                                                                            |
| 4         | 27                                | 22                                                                                                                    | 48                                                                                                                                                                           | 36                                                                                                                                                                                                                                                                                    | 110                                                                       | 72                                                                                           | 482                                                                                                       | 306                                                                                                                             |
| 5         | 2                                 | 2                                                                                                                     | 4                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                     | 6                                                                         | 6                                                                                            | 33                                                                                                        | 28                                                                                                                              |
| 6         | 0                                 | 0                                                                                                                     | 0                                                                                                                                                                            | 0                                                                                                                                                                                                                                                                                     | 0                                                                         | 0                                                                                            | 0                                                                                                         | 0                                                                                                                               |
|           | Set size<br>1<br>2<br>3<br>4<br>5 | Set size       C         1       16470         2       37401         3       239         4       27         5       2 | Set size       C       F         1       16470       274         2       37401       284         3       239       117         4       27       22         5       2       2 | Set size         C         F         C           1         16470         274         16470           2         37401         284         87153           3         239         117         413           4         27         22         48           5         2         2         4 | Set sizeCFCF1164702741647041823740128487153471323911741320642722483652244 | Set sizeCFCFC1164702741647041816470237401284871534713252213239117413206867427224836110522446 | Set sizeCFCFCF1164702741647041816470807237401284871534713252218953239117413206867411427224836110725224466 | Set sizeCFCFCFC1164702741647041816470807164702374012848715347132522189517232963239117413206867411343042722483611072482522446633 |

What do the frequent sets tell us?

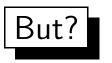
- There are lots of combinations of variables (columns) that occur fairly often
- Example: there are 448 rows in which all variables 32 38 39 41 48 are 1
- Is this interesting? Perhaps, if the products are of interest

#### Is the frequent set statistically significant?

- Focus on the set 32 38 39 41 48; how likely it is to see 448 occurrences of this set in 88162 rows, if the variables were independent?
- Frequencies of the individual variables:

32 15167 0.172036
38 15596 0.176902
39 50675 0.574794
41 14945 0.169517
48 42135 0.477927

- Probability of having all 5: 0.00141722; implies on expectation 125 occurrences
- Chernoff bound: the probability of seeing 448 occurrences in 88162 tries with probability 0.00141722 is very low



- We searched a lot of potential frequent sets
- Would a similar frequent set occur if the data were random?
- Would a similar number of frequent sets occur if the data were random?
- We will return to this issues later

#### Association rules

- Let R be a set, r a 0/1 relation over R, and  $X,X'\subseteq R$  sets of items
- $X \Rightarrow X'$  is an association rule over r.
- The accuracy of  $X \Rightarrow X'$  in r, denoted by  $conf(X \Rightarrow X', r)$ , is

$$\frac{|\mathcal{M}(X \cup X', r)|}{|\mathcal{M}(X, r)|}$$

•  $conf(X \Rightarrow X', r)$ : the conditional probability that a row in r matches X' given that it matches X

#### Association rules II

- The frequency  $fr(X \Rightarrow X', r)$  of  $X \Rightarrow X'$  in r is  $fr(X \cup X', r)$ .
  - frequency is also *called support*
- a frequency threshold min\_fr and a accuracy threshold min\_conf
- $X \Rightarrow X'$  holds in r if and only if  $fr(X \Rightarrow X', r) \ge min_fr$  and  $conf(X \Rightarrow X', r) \ge min_conf$ .

## Discovery task

- given R, r, min\_fr, and min\_conf
- find all association rules X ⇒ X' that hold in r with respect to min\_fr and min\_conf
- X and X' are disjoint and non-empty
- $min_fr = 0.3$ ,  $min_conf = 0.9$
- The only association rule with disjoint and non-empty left and right-hand sides that holds in the database is {A} ⇒ {B}
- frequency 0.6, accuracy 1
- when is the task feasible? interesting?
- note: asymmetry between 0 and 1

### How to find association rules

- Find all frequent item sets  $X \subseteq R$  and their frequencies.
- Then test separately for all  $X' \subset X$  with  $X' \neq \emptyset$  whether the rule  $X \setminus X' \Rightarrow X'$  holds with sufficient accuracy.
- Latter task is easy.
- exercise: rule discovery and finding frequent sets are equivalent problems

## Rule generation

#### Algorithm

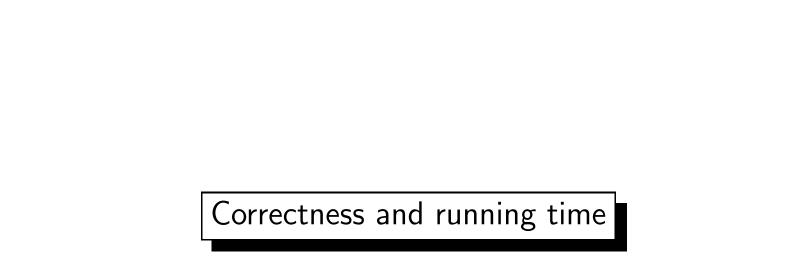
**Input:** A set R, a 0/1 relation r over R, a frequency threshold *min\_fr*, and a accuracy threshold *min\_conf*.

**Output:** The association rules that hold in r with respect to  $min_fr$  and  $min_conf$ , and their frequencies and accuracies.

#### Method:

7.

- 1. // Find frequent sets (Algorithm 28):
- 2. compute  $\mathcal{F}(r, \min_f r) := \{X \subseteq R \mid fr(X, r) \geq \min_f r\};$
- 3. // Generate rules:
- 4. for all  $X \in \mathcal{F}(r, \min_{r} fr)$  do
- 5. for all  $X' \subset X$  with  $X' \neq \emptyset$  do
- 6. if  $fr(X)/fr(X \setminus X') \ge min\_conf$  then
  - output the rule  $X \setminus X' \Rightarrow X'$ , fr(X), and  $fr(X)/fr(X \setminus X')$ ;



- the algorithm is correct
- running time?

# Examples

- Same data as before
- Accuracy threshold 0.9

|   | Frequency | Rules |
|---|-----------|-------|
|   | 5000      | 0     |
|   | 2000      | 4     |
|   | 1000      | 14    |
| • | 500       | 32    |
|   | 400       | 44    |
|   | 300       | 64    |
|   | 200       | 100   |
|   | 100       | 220   |

## Example rules

```
36 39 41 =i 38 (553, 0.966783)

36 39 48 =i 38 (1080, 0.967742)

36 41 =i 38 (671, 0.958571)

36 48 =i 38 (1360, 0.960452)

37 =i 38 (1046, 0.973929)

37 39 =i 38 (684, 0.967468)

37 48 =i 38 (557, 0.985841)
```

Are these interesting?

### Rule selection and presentation

- Recall the KDD process
- association rules etc.: idea is to generate all rules of a given form
- Lots of rules
- All rules won't be interesting
- How to make it possible for the user to find the truly interesting rules? Second-order knowledge discovery problem
- Provide tools for the user
- Test for significance of the rules and rule sets

## Theoretical analyses

- Fairly good algorithm
- Is a better one possible?
- How good will this algorithm be on future data sets
- A lower bound (skipped at least now)
- Association rules on random data sets (skipped at least now)
- sampling

## Sampling for finding association rules

- two causes for complexity
- lots of attributes
- lots of rows
- potentially exponential in the number of attributes
- linear in the number of rows
- too many rows: take a sample from them
- in detail later

# Extensions

- candidate generation
- rule generation
- database pass
  - inverted structures
  - Partition method
  - hashing to determine which candidates match a row or to prune candidates
- item hierarchies
- attributes with continuous values