Approximate counting: count-min data structure

• Problem definition
• 2-independent hash functions
• Count-min data structures
Problem definition

- A large set U of potential identifiers (e.g., IP addresses or sentences)
- Keep counts associated with each $u \in U$
- For $u \in U$ and integer c operations $\text{inc}(u, b)$ and $\text{dec}(u, b)$: increase or decrease the count associated with u by b; assume the counts stay nonnegative
- Queries: approximate counts $C(u)$: what is the count associated to u?
- Initially, $C(u) = 0$ for all $u \in U$; $S = \sum_{u \in U} C(u)$
- Heavy hitters: which items u satisfy $C(u) \geq \alpha S$ (approximately)
- U is so large that we cannot keep an array element for each u seen in the query stream
Basic idea

- Keep several hash tables A_i, $i = 1, \ldots, k$ and hash functions h_i
- Implement $\text{inc}(u, c)$ by doing $A_i[h_i(u)] = A_i[h_i(u)] + c$ and
 $\text{dec}(u, c)$ by doing $A_i[h_i(u)] = A_i[h_i(u)] - c$
- Answer question $C(u)$? by

$$\min_{i=1}^{k} A_i[h_i(u)]$$

- Heavy hitters: use these counts to keep a heap structure
Families of universal hash functions

- U the universe with $|U| \geq n$, and $V = \{0, 1, \ldots, n - 1\}$
- \mathcal{H}: a family of functions $h : U \to V$
- \mathcal{H} is 2-universal, if for any $u_1, u_2 \in U$ and for a uniformly selected function $h \in \mathcal{H}$ we have
 $$Pr(h(u_1) = h(u_2)) \leq \frac{1}{n}.$$
- Thus collisions are about as rare as they can be
- Note that h is selected at random, and that the claim holds for all u_1, u_2
- Also called pairwise independent hash functions
A simple universal family

- Assume $U = \{0, \ldots, m - 1\}$ and $V = \{0, 1, \ldots, n - 1\}$
- Let $p \geq m$ be prime
- $h_{a,b}(u) = (((ax + b) \mod p) \mod n)$
- Family
 \[\mathcal{H} = \{ h_{a,b} | 1 \leq a \leq p - 1, 0 \leq b \leq p \} \]
 is 2-universal.
Count-min data structure

- Parameters ε (the accuracy we want to have) and δ (the certainty with which we reach the accuracy)
- $w = \lceil e/\varepsilon \rceil$ (here e is the base of ln)
- $d = \lceil \ln(1/\delta) \rceil$
- Array A of size $d \times w$, initially 0
- Pairwise independent hash functions $h_1, \ldots, h_d : \{0, \ldots, m - 1\} \rightarrow \{1, \ldots, w\}$
Update procedure and answering count queries

- inc(u, c) by doing $A[i, h_i(u)] = A[i, h_i(u)] + c$ for all $i = 1, \ldots, d$
- dec(u, c) $A[i, h_i(u)] = A[i, h_i(u)] - c$ for all $i = 1, \ldots, d$
- Answer $C(u)$ by returning $\hat{c} = \min_j A[j, h_j(u)]$
Example

<table>
<thead>
<tr>
<th>ε</th>
<th>δ</th>
<th>w</th>
<th>d</th>
<th>wd</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.1</td>
<td>28</td>
<td>3</td>
<td>84</td>
</tr>
<tr>
<td>0.1</td>
<td>0.01</td>
<td>28</td>
<td>5</td>
<td>140</td>
</tr>
<tr>
<td>0.1</td>
<td>0.001</td>
<td>28</td>
<td>7</td>
<td>196</td>
</tr>
<tr>
<td>0.01</td>
<td>0.1</td>
<td>272</td>
<td>3</td>
<td>816</td>
</tr>
<tr>
<td>0.01</td>
<td>0.01</td>
<td>272</td>
<td>5</td>
<td>1360</td>
</tr>
<tr>
<td>0.01</td>
<td>0.001</td>
<td>272</td>
<td>7</td>
<td>1904</td>
</tr>
<tr>
<td>0.001</td>
<td>0.001</td>
<td>2719</td>
<td>7</td>
<td>19033</td>
</tr>
</tbody>
</table>
Properties

• Estimates are never too small: \(C(u) \leq \hat{c} \)

• With probability at least \(1 - \delta \)
 \[
 \hat{c} \leq C(u) + \varepsilon S
 \]

• What does this mean? If \(S \) is small, the estimates are accurate, if \(S \) is large, only counts that are large are estimated accurately.

• Recall \(S = \sum_{u \in U} C(u) \)
Proof

- Indicator variables $I(u, j, v)$: equal to 1 if and only if $u \neq v$ and $h_j(u) = h_j(v)$, 0 otherwise

- Pairwise independence:

$$E(I(u, j, v) = Pr(h_j(u) = h_j(v)) \leq 1/w = \varepsilon/e.$$

- $X(u, j) = \sum_{v \in U} I(u, j, v)C(v)$

- $A[j, h_j(u)] = C(u) + X(u, j)$

- Thus $C(u) \leq \hat{c} = \min_j A[j, h_j(u)]$
\[E(X(u, j)) = E\left(\sum_{v \in U} I(u, j, v) C(v) \right) \leq \sum_{v \in U} C(v) E(I(u, j, v)) \leq \frac{S \varepsilon}{e} \]

Markov’s inequality (but is pairwise independence enough?)

\[
Pr(\hat{c} > C(u) + \varepsilon S) = Pr(\forall j : A[j, h_j(u)] > C(u) + \varepsilon S) \\
= Pr(\forall j : C(u) + X(u, j) > C(u) + \varepsilon S) \\
= Pr(\forall j : X(u, j) > \varepsilon S) \\
\leq Pr(\forall j : X(u, j) > eE(X(u, j))) \\
= \bigcap_{j=1}^{d} Pr(X(u, j) > eE(X(u, j))) \\
< \left(\frac{1}{e} \right)^d = e^{-d} \leq \delta
\]
Answering heavy hitter queries

- Maintain S all the time
- When seeing inc operations, see if the frequency seems to be high enough
- Decreasing the counts makes things more difficult
Chapter 3: Frequent sets and association rules
Chapter 3. Frequent sets and association rules

How to count frequently occurring subsets in data?

• 1. Problem formulation
• 2. Rules from frequent sets
• 3. Finding frequent sets
• 4. Experimental results
• 5. Related issues
• 6. Rule selection and presentation
• 7. Theoretical results
Example

- Customer 1: mustard, sausage, beer, chips
 Customer 2: sausage, ketchup
 Customer 3: beer, chips, cigarettes
 ...
 Customer 236513: coke, chips

- A set of products \(X \) \{ mustard, chips \}

- Frequency \(f(X) \) of \(X \) in the dataset: the fraction of rows that have all elements of \(X \)

- Basic task: find all sets \(X \) such that \(f(X) > c \) for a given constant \(c \)

- A frequent set
Problem formulation: data

- a set R of items
- a 0/1 dataset r over R (or 0-1 relation) is a collection (or multiset) of subsets of R
- the elements of r are called *rows*
- the number of rows in r is denoted by $|r|$
- the size of r is denoted by $||r|| = \sum_{t \in r} |t|$
Figure 1: An example 0/1 relation \(r \) over the set \(R = \{A, \ldots, K\} \).
Example

<table>
<thead>
<tr>
<th>Row ID</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>t_4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>t_5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

a 0/1 relation over the schema \{A, ..., K\}
Notation

- Sometime we write just ABC for $\{A, B, C\}$ etc.
- Attributes = variables
- An observation in the data is
 - A set of attributes, or
 - A row of 0s and 1s
Patterns: sets of items

- \(r \) a 0/1 relation over \(R \)
- \(X \subseteq R \)
- \(X \) matches a row \(t \in r \), if \(X \subseteq t \)
- the set of rows in \(r \) matched by \(X \) is denoted by \(M(X, r) \), i.e.,
 \[M(X, r) = \{ t \in r \mid X \subseteq t \} \]
- the (relative) frequency of \(X \) in \(r \), denoted by \(fr(X, r) \), is
 \[\frac{|M(X, r)|}{|r|} \]
- Given a frequency threshold \(min_{fr} \in [0, 1] \), the set \(X \) is frequent,
 if \(fr(X, r) \geq min_{fr} \).
Frequent sets

- given R (a set), r (a 0/1 relation over R), and min_{fr} (a frequency threshold)
- the collection of frequent sets $\mathcal{F}(r, min_{fr})$

$$\mathcal{F}(r, min_{fr}) = \{X \subseteq R \mid fr(X, r) \geq min_{fr}\},$$

- In the example relation:
 $$\mathcal{F}(r, 0.3) = \{\emptyset, \{A\}, \{B\}, \{E\}, \{G\}, \{A, B\}\}$$
Finding frequent sets

• Task: given R (a set), r (a 0/1 relation over R), and min_fr (a frequency threshold), find the collection of frequent sets $\mathcal{F}(r, \text{min_fr})$ and the frequency of each set in this collection.

• Count the number of times combinations of attributes occurs in the data
Why find frequent sets?

- Find all combinations of attributes that occur together
- They might be interesting
- Positive combinations only
- Provides a type of summary of the data
When is the task sensible and feasible?

- If $\text{min}_fr = 0$, then all subsets of R will be frequent, and hence $\mathcal{F}(r, \text{min}_fr)$ will have size $2^{|r|}$
- Very large, and not interesting
- If there is a subset X that is frequent, then all its subsets will be frequent (why?)
- Thus if a large set X is frequent, there will be at least $2^{|X|}$ frequent sets
- The task of finding all frequent sets is interesting typically only for reasonably large values of min_fr, and for datasets that do not have large subsets that would be very strongly correlated.
Finding frequent sets

• trivial solution (look at all subsets of R) is not feasible
• iterative approach
• first frequent sets of size 1, then of size 2, etc.
• a collection C_l of candidate sets of size l
• then obtain the collection $F_i(r)$ of frequent sets by computing the frequencies of the candidates from the database
• minimize the number of candidates?
monotonicity: assume $X' \subseteq X$

then $fr(X') \geq fr(X)$

if X is frequent then X' is also frequent

Let $X \subseteq R$ be a set. If any of the proper subsets $X' \subset X$ is not frequent then (1) X is not frequent and (2) there is a non-frequent subset $X'' \subset X$ of size $|X| - 1$.
Example

\(\mathcal{F}_2(r) = \{\{A, B\}, \{A, C\}, \{A, E\}, \{A, F\}, \{B, C\}, \{B, E\}, \{C, G\}\}, \)

- then \(\{A, B, C\} \) and \(\{A, B, E\} \) are the only possible members of \(\mathcal{F}_3(r) \),
Levelwise search

- levelwise search: generate and test
- candidate collection:

\[\mathcal{C}(\mathcal{F}_l(r)) = \{ X \subseteq R \mid |X| = l+1 \text{ and } X' \in \mathcal{F}_l(r) \text{ for all } X' \subseteq X, |X'| = l \}. \]
Apriori algorithm for frequent sets

Algorithm

Input: A set R, a 0/1 relation r over R, and a frequency threshold min_{fr}.

Output: The collection $F(r, min_{fr})$ of frequent sets and their frequencies.

Method:
1. $C_1 := \{A \mid A \in R\}$;
2. $l := 1$;
3. while $C_l \neq \emptyset$ do
4. // Database pass (Algorithm 35):
5. compute $F_l(r) := \{X \in C_l \mid fr(X, r) \geq min_{fr}\}$;
6. $l := l + 1$;
7. // Candidate generation (Algorithm 32):
8. compute $C_l := C(F_{l-1}(r))$;
9. for all l and for all $X \in F_l(r)$ do output X and $fr(X, r)$;
Correctness

• reasonably clear
• optimality in a sense?
• For any collection S of subsets of X of size l, there exists a 0/1 relation r over R and a frequency threshold min_{fr} such that $\mathcal{F}_l(r) = S$ and $\mathcal{F}_{l+1}(r) = C(S)$.
• fewer candidates do not suffice
Additional information can change things...

- frequent sets: \{A, B\}, \{A, C\}, \{A, D\}, \{B, C\}, and \{B, D\}
- candidates: \{A, B, C\} and \{A, B, D\}
- what if we know that \(fr(\{A, B, C\}) = fr(\{A, B\})\)
- can infer \(fr(\{A, B, D\}) < min_{fr}\)
- how?
Candidate generation

- how to generate the collection $\mathcal{C}(\mathcal{F}_l(r))$?
- trivial method: check all subsets
- compute potential candidates as unions $X \cup X'$ of size $l + 1$
- here X and X' are frequent sets of size l
- check which are true candidates
- not optimal, but fast
- collections of item sets are stored as arrays, sorted in the lexicographical order
Candidate generation algorithm

Algorithm
Input: A lexicographically sorted array \(F_l(r) \) of frequent sets of size \(l \).
Output: \(C(F_l(r)) \) in lexicographical order.

Method:
1. for all \(X \in F_l(r) \) do
2. for all \(X' \in F_l(r) \) such that \(X < X' \) and \(X \) and \(X' \) share their \(l - 1 \) lexicographically first items do
3. for all \(X'' \subset (X \cup X') \) such that \(|X''| = l \) do
4. if \(X'' \) is not in \(F_l(r) \) then continue with the next \(X' \) at line 2;
5. output \(X \cup X' \);
Correctness and running time

Theorem 1 Algorithm 32 works correctly.

Theorem 2 Algorithm 32 can be implemented to run in time
\[O(l^2 |\mathcal{F}_i(r)|^2 \log |\mathcal{F}_i(r)|) \].
Optimizations

compute many levels of candidates at a single pass

\[\mathcal{F}_2(r) = \{\{A, B\}, \{A, C\}, \{A, D\}, \{A, E\}, \{B, C\}, \{B, D\}, \{B, G\}, \{C, D\}, \{F, G\}\}. \]

\[C(\mathcal{F}_2(r)) = \{\{A, B, C\}, \{A, B, D\}, \{A, C, D\}, \{B, C, D\}\}, \]
\[C(C(\mathcal{F}_2(r))) = \{\{A, B, C, D\}\}, \text{ and} \]
\[C(C(C(\mathcal{F}_2(r)))) = \emptyset. \]
• Database pass

 • go through the database once and compute the frequencies of each candidate

 • thousands of candidates, millions of rows
Algorithm

Input: R, r over R, a candidate collection $C_l \supseteq \mathcal{F}_l(r, \text{min}_fr)$, and min_fr.

Output: Collection $\mathcal{F}_l(r, \text{min}_fr)$ of frequent sets and frequencies.

Method:
1. // Initialization:
2. for all $A \in R$ do $A.is\text{_}contained\text{_}in := \emptyset$;
3. for all $X \in C_l$ and for all $A \in X$ do
4. $A.is\text{_}contained\text{_}in := A.is\text{_}contained\text{_}in \cup \{X\}$;
5. for all $X \in C_l$ do $X.freq\text{_}count := 0$;
6. // Database access:
7. for all $t \in r$ do
8. for all $X \in C_l$ do $X.item\text{_}count := 0$;
9. for all $A \in t$ do
10. for all $X \in A.is\text{_}contained\text{_}in$ do
11. $X.item\text{_}count := X.item\text{_}count + 1$;
12. if $X.item\text{_}count = l$ then $X.freq\text{_}count := X.freq\text{_}count + 1$;
13. // Output:
14. for all $X \in C_l$ do
15. if $X.freq\text{_}count/|r| \geq \text{min}_fr$ then output X and $X.freq\text{_}count/|r|$;
Data structures

- for each $A \in R$ a list $A.is_contained_in$ of candidates that contain A

- For each candidate X we maintain two counters:
 - $X.freq_count$ the number of rows that X matches,
 - $X.item_count$ the number of items of X
Correctness

- clear (?)

Time complexity

- $\mathcal{O}(||r|| + l |r| |C_l| + |R|)$
Implementations

- Lots of them around
- See, e.g., the web page of Bart Goethals
- Typical input format: each row lists the numbers of attributes that are equal to 1 for that row
Experimental results

- A retail transaction dataset, 88162 rows and 16470 columns, 908576 ones
- Rows: transactions, columns: products; completely anonymized

Log of the number of occurrences of variables

Log2(number of occurrences)
Log of the number of occurrences of variables

Log(variable), in frequency order
Number of frequent sets

- Number of frequent sets found for different thresholds

<table>
<thead>
<tr>
<th>Threshold</th>
<th>Sets</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000</td>
<td>15</td>
<td>0.97s</td>
</tr>
<tr>
<td>2000</td>
<td>45</td>
<td>1.28s</td>
</tr>
<tr>
<td>1000</td>
<td>135</td>
<td>1.65s</td>
</tr>
<tr>
<td>500</td>
<td>468</td>
<td>1.92s</td>
</tr>
<tr>
<td>400</td>
<td>699</td>
<td>2.14s</td>
</tr>
<tr>
<td>300</td>
<td>1135</td>
<td>2.51s</td>
</tr>
<tr>
<td>200</td>
<td>2191</td>
<td>3.87s</td>
</tr>
<tr>
<td>100</td>
<td>6451</td>
<td>6.83s</td>
</tr>
</tbody>
</table>
Candidates and frequent sets

<table>
<thead>
<tr>
<th>Threshold</th>
<th>5000</th>
<th>2000</th>
<th>1000</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set size</td>
<td>C F</td>
<td>C F</td>
<td>C F</td>
<td>C F</td>
</tr>
<tr>
<td>1</td>
<td>16470</td>
<td>16470</td>
<td>16470</td>
<td>16470</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>120</td>
<td>1540</td>
<td>17020</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>14</td>
<td>31</td>
<td>153</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>17</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Threshold</td>
<td>400</td>
<td>300</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>-----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>Set size</td>
<td>C</td>
<td>F</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>16470</td>
<td>274</td>
<td>16470</td>
<td>418</td>
</tr>
<tr>
<td>2</td>
<td>37401</td>
<td>284</td>
<td>87153</td>
<td>471</td>
</tr>
<tr>
<td>3</td>
<td>239</td>
<td>117</td>
<td>413</td>
<td>206</td>
</tr>
<tr>
<td>4</td>
<td>27</td>
<td>22</td>
<td>48</td>
<td>36</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
What do the frequent sets tell us?

- There are lots of combinations of variables (columns) that occur fairly often
- Example: there are 448 rows in which all variables 32 38 39 41 48 are 1
- Is this interesting? Perhaps, if the products are of interest
Is the frequent set statistically significant?

• Focus on the set 32 38 39 41 48; how likely it is to see 448 occurrences of this set in 88162 rows, if the variables were independent?

• Frequencies of the individual variables:
 32 15167 0.172036
 38 15596 0.176902
 39 50675 0.574794
 41 14945 0.169517
 48 42135 0.477927

• Probability of having all 5: 0.00141722; implies on expectation 125 occurrences

• Chernoff bound: the probability of seeing 448 occurrences in 88162 tries with probability 0.00141722 is very low
But?

- We searched a lot of potential frequent sets
- Would a similar frequent set occur if the data were random?
- Would a similar number of frequent sets occur if the data were random?
- We will return to this issues later
Association rules

- Let R be a set, r a 0/1 relation over R, and $X, X' \subseteq R$ sets of items.
- $X \Rightarrow X'$ is an association rule over r.
- The accuracy of $X \Rightarrow X'$ in r, denoted by $\text{conf}(X \Rightarrow X', r)$, is
 \[
 \frac{|\mathcal{M}(X \cup X', r)|}{|\mathcal{M}(X, r)|}.
 \]
- $\text{conf}(X \Rightarrow X', r)$: the conditional probability that a row in r matches X' given that it matches X.
Association rules II

- The frequency $fr(X \Rightarrow X', r)$ of $X \Rightarrow X'$ in r is $fr(X \cup X', r)$.
 - frequency is also called support
- a frequency threshold min_fr and a accuracy threshold min_conf
- $X \Rightarrow X'$ holds in r if and only if $fr(X \Rightarrow X', r) \geq \text{min}_fr$ and $\text{conf}(X \Rightarrow X', r) \geq \text{min}_\text{conf}$.
Discovery task

• given \(R, r, \text{min}_fr, \) and \(\text{min}_conf \)

• find all association rules \(X \Rightarrow X' \) that hold in \(r \) with respect to \(\text{min}_fr \) and \(\text{min}_conf \)

• \(X \) and \(X' \) are disjoint and non-empty

• \(\text{min}_fr = 0.3, \text{min}_conf = 0.9 \)

• The only association rule with disjoint and non-empty left and right-hand sides that holds in the database is \(\{A\} \Rightarrow \{B\} \)

• frequency 0.6, accuracy 1

• when is the task feasible? interesting?

• note: asymmetry between 0 and 1
How to find association rules

- Find all frequent item sets $X \subseteq R$ and their frequencies.
- Then test separately for all $X' \subset X$ with $X' \neq \emptyset$ whether the rule $X \setminus X' \Rightarrow X'$ holds with sufficient accuracy.
- Latter task is easy.
- exercise: rule discovery and finding frequent sets are equivalent problems
Rule generation

Algorithm

Input: A set R, a 0/1 relation r over R, a frequency threshold min_fr, and an accuracy threshold min_conf.

Output: The association rules that hold in r with respect to min_fr and min_conf, and their frequencies and accuracies.

Method:

1. // Find frequent sets (Algorithm 28):
2. compute $\mathcal{F}(r, min_fr) := \{X \subseteq R \mid fr(X, r) \geq min_fr\}$;
3. // Generate rules:
4. for all $X \in \mathcal{F}(r, min_fr)$ do
5. for all $X' \subset X$ with $X' \neq \emptyset$ do
6. if $fr(X)/fr(X \setminus X') \geq min_conf$ then
7. output the rule $X \setminus X' \Rightarrow X'$, $fr(X)$, and $fr(X)/fr(X \setminus X')$;
Correctness and running time

- the algorithm is correct
- running time?
Examples

- Same data as before
- Accuracy threshold 0.9

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>4</td>
</tr>
<tr>
<td>1000</td>
<td>14</td>
</tr>
<tr>
<td>500</td>
<td>32</td>
</tr>
<tr>
<td>400</td>
<td>44</td>
</tr>
<tr>
<td>300</td>
<td>64</td>
</tr>
<tr>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>220</td>
</tr>
</tbody>
</table>
Example rules

36 39 41 = 38 (553, 0.966783)
36 39 48 = 38 (1080, 0.967742)
36 41 = 38 (671, 0.958571)
36 48 = 38 (1360, 0.960452)
37 = 38 (1046, 0.973929)
37 39 = 38 (684, 0.967468)
37 48 = 38 (557, 0.985841)

Are these interesting?
Rule selection and presentation

- Recall the KDD process
- association rules etc.: idea is to generate all rules of a given form
- Lots of rules
- All rules won’t be interesting
- How to make it possible for the user to find the truly interesting rules? Second-order knowledge discovery problem
- Provide tools for the user
- Test for significance of the rules and rule sets
Theoretical analyses

- Fairly good algorithm
- Is a better one possible?
- How good will this algorithm be on future data sets
- A lower bound (skipped at least now)
- Association rules on random data sets (skipped at least now)
- sampling
Sampling for finding association rules

- two causes for complexity
- lots of attributes
- lots of rows
- potentially exponential in the number of attributes
- linear in the number of rows
- too many rows: take a sample from them
- in detail later
Extensions

- candidate generation
- rule generation
- database pass
 - inverted structures
 - Partition method
 - hashing to determine which candidates match a row or to prune candidates
- item hierarchies
- attributes with continuous values