Approximate counting: count-min data structure

- Problem definition
- 2-independent hash functions
- Count-min data structures

Problem definition

- A large set U of potential identifiers (e.g., IP addresses or sentences)
- Keep counts associated with each $u \in U$
- For $u \in U$ and integer c operations $\text{inc}(u, b)$ and $\text{dec}(u, b)$: increase or decrease the count associated with u by b; assume the counts stay nonnegative
- Queries: approximate counts $C(u)$: what is the count associated to u?
- Initially, $C(u) = 0$ for all $u \in U$; $S = \sum_{u \in U} C(u)$
- Heavy hitters: which items u satisfy $C(u) \geq \alpha S$ (approximately)
- U is so large that we cannot keep an array element for each u seen in the query stream
Basic idea

- Keep several hash tables A_i, $i = 1, \ldots, k$ and hash functions h_i
- Implement $\text{inc}(u, c)$ by doing $A_i[h_i(u)] = A_i[h_i(u)] + c$ and $\text{dec}(u, c)$ by doing $A_i[h_i(u)] = A_i[h_i(u)] - c$
- Answer question $C(u)$ by
 $$\min_{i=1}^{k} A_i[h_i(u)]$$
- Heavy hitters: use these counts to keep a heap structure

Families of universal hash functions

- U the universe with $|U| \geq n$, and $V = \{0, 1, \ldots, n - 1\}$
- \mathcal{H}: a family of functions $h : U \rightarrow V$
- \mathcal{H} is 2-universal, if for any $u_1, u_2 \in U$ and for a uniformly selected function $h \in \mathcal{H}$ we have
 $$\Pr(h(u_1) = h(u_2)) \leq \frac{1}{n}.$$
- Thus collisions are about as rare as they can be
- Note that h is selected at random, and that the claim holds for all u_1, u_2
- Also called pairwise independent hash functions
A simple universal family

- Assume $U = \{0, \ldots, m - 1\}$ and $V = \{0, 1, \ldots, n - 1\}$
- Let $p \geq m$ be prime
- $h_{a,b}(u) = ((ax + b) \mod p) \mod n$
- Family
 $$\mathcal{H} = \{h_{a,b} | 1 \leq a \leq p - 1, 0 \leq b \leq p\}$$
 is 2-universal.

Count-min data structure

- Parameters ε (the accuracy we want to have) and δ (the certainty with which we reach the accuracy)
- $w = \lceil e/\varepsilon \rceil$ (here e is the base of ln)
- $d = \lceil \ln(1/\delta) \rceil$
- Array A of size $d \times w$, initially 0
- Pairwise independent hash functions $h_1, \ldots, h_d : \{0, \ldots, m - 1\} \rightarrow \{1, \ldots, w\}$
Update procedure and answering count queries

- \textbf{inc}(u, c) by doing } A[i, h_i(u)] = A[i, h_i(u)] + c \text{ for all } i = 1, \ldots, d
- \textbf{dec}(u, c) A[i, h_i(u)] = A[i, h_i(u)] - c \text{ for all } i = 1, \ldots, d
- \text{Answer } C(u) \text{ by returning } \hat{c} = \min_j A[j, h_j(u)]

\begin{table}[h]
\centering
\begin{tabular}{cccccc}
\hline
ε & δ & w & d & wd \\
\hline
0.1 & 0.1 & 28 & 3 & 84 \\
0.1 & 0.01 & 28 & 5 & 140 \\
0.1 & 0.001 & 28 & 7 & 196 \\
0.01 & 0.1 & 272 & 3 & 816 \\
0.01 & 0.01 & 272 & 5 & 1360 \\
0.01 & 0.001 & 272 & 7 & 1904 \\
0.001 & 0.001 & 2719 & 7 & 19033 \\
\hline
\end{tabular}
\caption{Example}
\end{table}
Properties

• Estimates are never too small: $C(u) \leq \hat{c}$
• With probability at least $1 - \delta$
 $$\hat{c} \leq C(u) + \varepsilon S$$
• What does this mean? If S is small, the estimates are accurate, if S is large, only counts that are large are estimated accurately.
• Recall $S = \sum_{u \in U} C(u)$

Proof

• Indicator variables $I(u, j, v)$: equal to 1 if and only if $u \neq v$ and $h_j(u) = h_j(v)$, 0 otherwise
• Pairwise independence:
 $$E(I(u, j, v) = Pr(h_j(u) = h_j(v)) \leq 1/w = \varepsilon/e.$$
• $X(u, j) = \sum_{v \in U} I(u, j, v)C(v)$
• $A[j, h_j(u)] = C(u) + X(u, j)$
• Thus $C(u) \leq \hat{c} = \min_j A[j, h_j(u)]$
\[
E(X(u, j)) = E(\sum_{v \in U} I(u, j, v)C(v)) \leq \sum_{v \in U} C(v)E(I(u, j, v)) \leq S^\varepsilon_e
\]

Markov’s inequality (but is pairwise independence enough?)

\[
Pr(\hat{c} > C(u) + \varepsilon S) = Pr(\forall j : A[j, h_j(u)] > C(u) + \varepsilon S)
= Pr(\forall j : C(u) + X(u, j) > C(u) + \varepsilon S)
= Pr(\forall j : X(u, j) > \varepsilon S)
\leq Pr(\forall j : X(u, j) > eE(X(u, j)))
= \bigcap_{j=1}^{d} Pr(X(u, j) > eE(X(u, j)))
< \left(\frac{1}{e}\right)^d = e^{-d} \leq \delta
\]

Answering heavy hitter queries

- Maintain \(S \) all the time
- When seeing inc operations, see if the frequency seems to be high enough
- Decreasing the counts makes things more difficult
Chapter 3: Frequent sets and association rules

How to count frequently occurring subsets in data?

• 1. Problem formulation
• 2. Rules from frequent sets
• 3. Finding frequent sets
• 4. Experimental results
• 5. Related issues
• 6. Rule selection and presentation
• 7. Theoretical results
• Customer 1: mustard, sausage, beer, chips
 Customer 2: sausage, ketchup
 Customer 3: beer, chips, cigarettes
 ...
 Customer 236513: coke, chips
• A set of products $X \{ \text{mustard, chips} \}$
• Frequency $f(X)$ of X in the dataset: the fraction of rows that
 have all elements of X
• Basic task: find all sets X such that $f(X) > c$ for a given
 constant c
• A frequent set

Problem formulation: data

• a set R of items
• a 0/1 dataset r over R (or 0-1 relation) is a collection (or
 multiset) of subsets of R
• the elements of r are called rows
• the number of rows in r is denoted by $|r|$
• the size of r is denoted by $||r|| = \sum_{t \in r} |t|$
Figure 1: An example 0/1 relation r over the set $R = \{A, \ldots, K\}$.

<table>
<thead>
<tr>
<th>Row ID</th>
<th>Row</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_1</td>
<td>${A, B, C, D, G}$</td>
</tr>
<tr>
<td>t_2</td>
<td>${A, B, E, F}$</td>
</tr>
<tr>
<td>t_3</td>
<td>${B, I, K}$</td>
</tr>
<tr>
<td>t_4</td>
<td>${A, B, H}$</td>
</tr>
<tr>
<td>t_5</td>
<td>${E, G, J}$</td>
</tr>
</tbody>
</table>

a 0/1 relation over the schema $\{A, \ldots, K\}$
Notation

- Sometime we write just ABC for $\{A, B, C\}$ etc.
- Attributes = variables
- An observation in the data is
 - A set of attributes, or
 - A row of 0s and 1s

Patterns: sets of items

- r a 0/1 relation over R
- $X \subseteq R$
- X matches a row $t \in r$, if $X \subseteq t$
- the set of rows in r matched by X is denoted by $\mathcal{M}(X, r)$, i.e., $\mathcal{M}(X, r) = \{t \in r \mid X \subseteq t\}$.
- the (relative) frequency of X in r, denoted by $fr(X, r)$, is $fr(X, r) = \frac{|\mathcal{M}(X, r)|}{|r|}$.
- Given a frequency threshold $min_{fr} \in [0, 1]$, the set X is frequent, if $fr(X, r) \geq min_{fr}$.
Frequent sets

- given R (a set), r (a 0/1 relation over R), and min_fr (a frequency threshold)
- the collection of frequent sets $\mathcal{F}(r, \text{min}_fr)$
 \[\mathcal{F}(r, \text{min}_fr) = \{ X \subseteq R \mid fr(X, r) \geq \text{min}_fr \}, \]
- In the example relation:
 \[\mathcal{F}(r, 0.3) = \{ \emptyset, \{A\}, \{B\}, \{E\}, \{G\}, \{A, B\} \} \]

Finding frequent sets

- Task: given R (a set), r (a 0/1 relation over R), and min_fr (a frequency threshold), find the collection of frequent sets $\mathcal{F}(r, \text{min}_fr)$ and the frequency of each set in this collection.
- Count the number of times combinations of attributes occurs in the data
Why find frequent sets?

- Find all combinations of attributes that occur together
- They might be interesting
- Positive combinations only
- Provides a type of summary of the data

When is the task sensible and feasible?

- If \(\text{min}_\text{fr} = 0 \), then all subsets of \(R \) will be frequent, and hence \(\mathcal{F}(r, \text{min}_\text{fr}) \) will have size \(2^{|r|} \)
- Very large, and not interesting
- If there is a subset \(X \) that is frequent, then all its subsets will be frequent (why?)
- Thus if a large set \(X \) is frequent, there will be at least \(2^{|X|} \) frequent sets
- The task of finding all frequent sets is interesting typically only for reasonably large values of \(\text{min}_\text{fr} \), and for datasets that do not have large subsets that would be very strongly correlated.
Finding frequent sets

- trivial solution (look at all subsets of R) is not feasible
- iterative approach
- first frequent sets of size 1, then of size 2, etc.
- a collection C_l of candidate sets of size l
- then obtain the collection $\mathcal{F}_l(r)$ of frequent sets by computing the frequencies of the candidates from the database
- minimize the number of candidates?

- monotonicity: assume $X' \subseteq X$
- then $fr(X') \geq fr(X)$
- if X is frequent then X' is also frequent
- Let $X \subseteq R$ be a set. If any of the proper subsets $X' \subset X$ is not frequent then (1) X is not frequent and (2) there is a non-frequent subset $X'' \subset X$ of size $|X| - 1$.

Algorithmic Methods of Data Mining, Fall 2005, Chapter 3: Frequent sets and association rules
\[\mathcal{F}_2(r) = \{\{A, B\}, \{A, C\}, \{A, E\}, \{A, F\}, \{B, C\}, \{B, E\}, \{C, G\}\}, \]

- then \(\{A, B, C\}\) and \(\{A, B, E\}\) are the only possible members of \(\mathcal{F}_3(r)\),

- **Levelwise search**
 - levelwise search: generate and test
 - candidate collection:
 \[\mathcal{C}(\mathcal{F}_l(r)) = \{X \subseteq R \mid |X| = l+1 \text{ and } X' \in \mathcal{F}_l(r) \text{ for all } X' \subseteq X, |X'| = l\}. \]
Apriori algorithm for frequent sets

Algorithm

Input: A set R, a 0/1 relation r over R, and a frequency threshold min_{fr}.

Output: The collection $\mathcal{F}(r, \text{min}_{\text{fr}})$ of frequent sets and their frequencies.

Method:
1. $C_1 := \{\{A\} \mid A \in R\}$;
2. $l := 1$;
3. while $C_l \neq \emptyset$ do
4. // Database pass (Algorithm 35):
5. compute $\mathcal{F}_l(r) := \{X \in C_l \mid fr(X, r) \geq \text{min}_{\text{fr}}\}$;
6. $l := l + 1$;
7. // Candidate generation (Algorithm 32):
8. compute $C_l := C(\mathcal{F}_{l-1}(r))$;
9. for all l and for all $X \in \mathcal{F}_l(r)$ do output X and $fr(X, r)$;

Correctness

- reasonably clear
- optimality in a sense?
- For any collection S of subsets of X of size l, there exists a 0/1 relation r over R and a frequency threshold min_{fr} such that $\mathcal{F}_l(r) = S$ and $\mathcal{F}_{l+1}(r) = C(S)$.
- fewer candidates do not suffice
Additional information can change things...

- frequent sets: \(\{A, B\}, \{A, C\}, \{A, D\}, \{B, C\}, \text{and} \{B, D\} \)
- candidates: \(\{A, B, C\} \) and \(\{A, B, D\} \)
- what if we know that \(fr(\{A, B, C\}) = fr(\{A, B\}) \)
- can infer \(fr(\{A, B, D\}) < min_fr \)
- how?

Candidate generation

- how to generate the collection \(C(F_l(r)) \)?
- trivial method: check all subsets
- compute potential candidates as unions \(X \cup X' \) of size \(l + 1 \)
- here \(X \) and \(X' \) are frequent sets of size \(l \)
- check which are true candidates
- not optimal, but fast
- collections of item sets are stored as arrays, sorted in the lexicographical order
Candidate generation algorithm

Algorithm

Input: A lexicographically sorted array \(\mathcal{F}_l(r) \) of frequent sets of size \(l \).

Output: \(\mathcal{C}(\mathcal{F}_l(r)) \) in lexicographical order.

Method:
1. for all \(X \in \mathcal{F}_l(r) \) do
2. for all \(X' \in \mathcal{F}_l(r) \) such that \(X < X' \) and \(X \) and \(X' \) share their \(l - 1 \) lexicographically first items do
3. for all \(X'' \subset (X \cup X') \) such that \(|X''| = l \) do
4. if \(X'' \) is not in \(\mathcal{F}_l(r) \) then continue with the next \(X' \) at line 2;
5. output \(X \cup X' \);
Optimizations

compute many levels of candidates at a single pass

\[
F_2(r) = \{\{A, B\}, \{A, C\}, \{A, D\}, \{A, E\}, \\
{B, C}, \{B, D\}, \{B, G\}, \{C, D\}, \{F, G\}\}.
\]

\[
C(F_2(r)) = \{\{A, B, C\}, \{A, B, D\}, \{A, C, D\}, \{B, C, D\}\},
\]
\[
C(C(F_2(r))) = \{\{A, B, C, D\}\}, \text{ and}
\]
\[
C(C(C(F_2(r)))) = \emptyset.
\]

Database pass

- go through the database once and compute the frequencies of each candidate
- thousands of candidates, millions of rows
Algorithm

Input: \(R, r \) over \(R \), a candidate collection \(C_l \supseteq \mathcal{F}_l(r, \text{min}_fr) \), and \(\text{min}_fr \).

Output: Collection \(\mathcal{F}_l(r, \text{min}_fr) \) of frequent sets and frequencies.

Method:
1. // Initialization:
2. for all \(A \in R \) do \(A.\text{is_contained_in} := \emptyset \);
3. for all \(X \in C_l \) and for all \(A \in X \) do
 \(A.\text{is_contained_in} := A.\text{is_contained_in} \cup \{X\} \);
4. for all \(X \in C_l \) do \(X.\text{freq_count} := 0 \);
5. // Database access:
6. for all \(t \in r \) do
7. for all \(X \in C_l \) do \(X.\text{item_count} := 0 \);
8. for all \(A \in t \) do
9. for all \(X \in A.\text{is_contained_in} \) do
10. \(X.\text{item_count} := X.\text{item_count} + 1 \);
11. if \(X.\text{item_count} = l \) then \(X.\text{freq_count} := X.\text{freq_count} + 1 \);
12. // Output:
13. for all \(X \in C_l \) do
14. if \(X.\text{freq_count}/|r| \geq \text{min}_fr \) then output \(X \) and \(X.\text{freq_count}/|r| \);

Data structures

- for each \(A \in R \) a list \(A.\text{is_contained_in} \) of candidates that contain \(A \)

- For each candidate \(X \) we maintain two counters:
 - \(X.\text{freq_count} \) the number of rows that \(X \) matches,
 - \(X.\text{item_count} \) the number of items of \(X \)
Correctness

- clear (?)

Time complexity

- $O(|r| + |r||C_l| + |R|)$

Implementations

- Lots of them around
- See, e.g., the web page of Bart Goethals
- Typical input format: each row lists the numbers of attributes that are equal to 1 for that row
Experimental results

- A retail transaction dataset, 88,162 rows and 16,470 columns, 908,576 ones
- Rows: transactions, columns: products; completely anonymized

![Log of the number of occurrences of variables](image)

Algorithmic Methods of Data Mining, Fall 2005, Chapter 3: Frequent sets and association rules
Number of frequent sets

- Number of frequent sets found for different thresholds

<table>
<thead>
<tr>
<th>Threshold</th>
<th>Sets</th>
<th>Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000</td>
<td>15</td>
<td>0.97s</td>
</tr>
<tr>
<td>2000</td>
<td>45</td>
<td>1.28s</td>
</tr>
<tr>
<td>1000</td>
<td>135</td>
<td>1.65s</td>
</tr>
<tr>
<td>500</td>
<td>468</td>
<td>1.92s</td>
</tr>
<tr>
<td>400</td>
<td>699</td>
<td>2.14s</td>
</tr>
<tr>
<td>300</td>
<td>1135</td>
<td>2.51s</td>
</tr>
<tr>
<td>200</td>
<td>2191</td>
<td>3.87s</td>
</tr>
<tr>
<td>100</td>
<td>6451</td>
<td>6.83s</td>
</tr>
</tbody>
</table>

Candidates and frequent sets

<table>
<thead>
<tr>
<th>Threshold</th>
<th>5000</th>
<th>2000</th>
<th>1000</th>
<th>500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Set size</td>
<td>C</td>
<td>F</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>F</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td></td>
<td>C</td>
<td>F</td>
<td>C</td>
<td>F</td>
</tr>
<tr>
<td>1</td>
<td>16470</td>
<td>5</td>
<td>16470</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>7</td>
<td>120</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>14</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Algorithmic Methods of Data Mining, Fall 2005, Chapter 3: Frequent sets and association rules
What do the frequent sets tell us?

- There are lots of combinations of variables (columns) that occur fairly often.
- Example: there are 448 rows in which all variables 32 38 39 41 48 are 1.
- Is this interesting? Perhaps, if the products are of interest.
Is the frequent set statistically significant?

- Focus on the set 32 38 39 41 48; how likely it is to see 448 occurrences of this set in 88162 rows, if the variables were independent?
- Frequencies of the individual variables:
 32 15167 0.172036
 38 15596 0.176902
 39 50675 0.574794
 41 14945 0.169517
 48 42135 0.477927
- Probability of having all 5: 0.00141722; implies on expectation 125 occurrences
- Chernoff bound: the probability of seeing 448 occurrences in 88162 tries with probability 0.00141722 is very low

But?

- We searched a lot of potential frequent sets
- Would a similar frequent set occur if the data were random?
- Would a similar number of frequent sets occur if the data were random?
- We will return to this issues later
Association rules

- Let R be a set, r a 0/1 relation over R, and $X, X' \subseteq R$ sets of items.
- $X \Rightarrow X'$ is an association rule over r.
- The accuracy of $X \Rightarrow X'$ in r, denoted by $\text{conf}(X \Rightarrow X', r)$, is
 \[\frac{|\mathcal{M}(X \cup X', r)|}{|\mathcal{M}(X, r)|}. \]
- $\text{conf}(X \Rightarrow X', r)$: the conditional probability that a row in r matches X' given that it matches X.

Association rules II

- The frequency $fr(X \Rightarrow X', r)$ of $X \Rightarrow X'$ in r is $fr(X \cup X', r)$.
 - Frequency is also called support.
- A frequency threshold min_fr and an accuracy threshold min_conf.
- $X \Rightarrow X'$ holds in r if and only if $fr(X \Rightarrow X', r) \geq \text{min}_fr$ and $\text{conf}(X \Rightarrow X', r) \geq \text{min}_\text{conf}$.
Discovery task

- given \(R, r, \text{min}_fr, \) and \(\text{min}_conf \)
- find all association rules \(X \Rightarrow X' \) that hold in \(r \) with respect to \(\text{min}_fr \) and \(\text{min}_conf \)
- \(X \) and \(X' \) are disjoint and non-empty

- \(\text{min}_fr = 0.3, \text{min}_conf = 0.9 \)
- The only association rule with disjoint and non-empty left and right-hand sides that holds in the database is \(\{ A \} \Rightarrow \{ B \} \)
- frequency 0.6, accuracy 1
- when is the task feasible? interesting?
- note: asymmetry between 0 and 1

How to find association rules

- Find all frequent item sets \(X \subseteq R \) and their frequencies.
- Then test separately for all \(X' \subset X \) with \(X' \neq \emptyset \) whether the rule \(X \setminus X' \Rightarrow X' \) holds with sufficient accuracy.
- Latter task is easy.
- exercise: rule discovery and finding frequent sets are equivalent problems
Algorithm

Input: A set R, a 0/1 relation r over R, a frequency threshold min_fr, and a accuracy threshold min_conf.

Output: The association rules that hold in r with respect to min_fr and min_conf, and their frequencies and accuracies.

Method:
1. // Find frequent sets (Algorithm 28):
2. compute $\mathcal{F}(r, \text{min}_fr) := \{X \subseteq R \mid \text{fr}(X, r) \geq \text{min}_fr\}$;
3. // Generate rules:
4. for all $X \in \mathcal{F}(r, \text{min}_fr)$ do
5. for all $X' \subset X$ with $X' \neq \emptyset$ do
6. if $\text{fr}(X)/\text{fr}(X \setminus X') \geq \text{min}_\text{conf}$ then
7. output the rule $X \setminus X' \Rightarrow X'$, $\text{fr}(X)$, and $\text{fr}(X)/\text{fr}(X \setminus X')$;

Correctness and running time

- the algorithm is correct
- running time?
Examples

- Same data as before
- Accuracy threshold 0.9

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>5000</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>4</td>
</tr>
<tr>
<td>1000</td>
<td>14</td>
</tr>
<tr>
<td>500</td>
<td>32</td>
</tr>
<tr>
<td>400</td>
<td>44</td>
</tr>
<tr>
<td>300</td>
<td>64</td>
</tr>
<tr>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>100</td>
<td>220</td>
</tr>
</tbody>
</table>

Example rules

36 39 41 \approx_1 38 (553, 0.966783)
36 39 48 \approx_1 38 (1080, 0.967742)
36 41 \approx_1 38 (671, 0.958571)
36 48 \approx_1 38 (1360, 0.960452)
37 \approx_1 38 (1046, 0.973929)
37 39 \approx_1 38 (684, 0.967468)
37 48 \approx_1 38 (557, 0.985841)

Are these interesting?
Rule selection and presentation

- Recall the KDD process
- association rules etc.: idea is to generate all rules of a given form
- Lots of rules
- All rules won’t be interesting
- How to make it possible for the user to find the truly interesting rules? Second-order knowledge discovery problem
- Provide tools for the user
- Test for significance of the rules and rule sets

Theoretical analyses

- Fairly good algorithm
- Is a better one possible?
- How good will this algorithm be on future data sets
- A lower bound (skipped at least now)
- Association rules on random data sets (skipped at least now)
- sampling
Sampling for finding association rules

- two causes for complexity
- lots of attributes
- lots of rows
- potentially exponential in the number of attributes
- linear in the number of rows
- too many rows: take a sample from them
- in detail later

Extensions

- candidate generation
- rule generation
- database pass
 - inverted structures
 - Partition method
 - hashing to determine which candidates match a row or to prune candidates
- item hierarchies
- attributes with continuous values