Theorem. Let \mathcal{A} be a collection of sets (frequent sets in our setting) and \mathcal{S} the collection of complements of the maximal sets in \mathcal{A} . Let \mathcal{X} be the collection of minimal transversals of \mathcal{S} and \mathcal{B}^- the negative border of \mathcal{A} . In this setting $\mathcal{X} = \mathcal{B}^-$.

PROOF. Let's prove a bit more, more precisely that the collection of all transversals of S equals the collection of sets not in A. Notice that in this problem setting S can also be the collection of all complements, not just of the maximal ones.

Let x be a transversal of S. Then for each $a \in A : x \cap a^C \neq \emptyset$ and so $x \notin A$. If on the other hand $a \in A$, then each transversal of S will contain an element of a^C and so a itself cannot be a transversal of S.