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Chapter 12.

Finding
fragments of orders, partial orders,

and total orders from 0-1 data
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Themes of the chapter

• Given a 0/1 a matrix
• Rows: observations, columns variables
• Can one find ordering information for the observations?
• Without additional assumptions, no; with some

assumptions, yes

• Paleontological application:
– find orders for subsets of fossil sites
– a good ordering for (a subset of) the rows is one where the 1s

are consecutive

• Also other applications
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Themes of the chapter

• Finding small total orders (fragments) from 0-1 data
– Local models/patterns

• Finding partial orders from 0-1 data
– A global model

• Find total orders for 0-1 data
– A global model
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Finding small total orders (fragments)
from 0-1 data

• Model: a subset of observations and a total order on the
subset

• Task: find all such models fulfilling certain criteria

• Algorithm: a pattern discovery algorithm (levelwise
search)
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Finding partial orders from 0-1 data

• Model: a partial order over all observations

• Loglikelihood: proportional to the number of cases the
observed occurrence patterns violate the continuity of
species

• Prior: prefer partial orders that are as specific as possible

• Task: find a model with high likelihood * prior

• Algorithm: Find fragments and use heuristic search to
build a good partial order
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Find total orders for 0-1 data

• Model: a total order

• Loglikelihood: how many cases the observed occurrence
patterns violate the continuity of species

• Task: find the best total order for the observations

• Algorithm: spectral method
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Type of data

• 0-1 data, large number of variables
• Examples:

– Occurrences of words in documents
– Occurrences of species in paleontological sites
– Occurrence of a particular motif in a promoter region of a gene

• Typically the data is sparse: only a few 1s
• Asymmetry between 0s and 1s

– A ”1” means that there really was something
– A ”0” has less information (in a way)
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Example

• Paleontological data from the NOW (Neogene  Mammal
Database)

• Fossil sites (one location, one layer)
• Each site contains fossils that are about the same age

(+- 1 Ma)
• Variables: species/genera
• A ”1” is reasonably certain
• A ”0” might be due to several reasons

– The species was not extant at that time
– The remains did not fossilize
– The tooth was overlooked
– …
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Site-genus -matrix
si

te

genus
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Background knowledge

• Species do not vanish and return

• An ordering of the sites with a ”0” between
”1”s is improbable

0
0
1
1
1
0
1
0
0
1
1

time
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Example: seriation
in paleontological data

• Given data about the
occurrences of genera in
fossil sites

• Want to find an ordering
in which occurrences of a
genus are consecutive

• Lazarus count: how
many 0s are between 1s

S
ite

Genus

1   1   1   0   0   0   0   0   0   0
0   0   0   0   1   1   1   1   0   1
0   0   0   1   1   1   1   0   1   0
1   1   0   1   0   1   0   0   0   0
1   1   1   1   0   0   0   0   0   0
0   0   0   0   0   1   1   1   1   0
0   0   0   0   0   0   1   1   1   1
0   1   1   1   1   1   1   0   0   0
0   1   0   1   1   0   0   0   0   0
0   0   1   1   1   1   1   1   0   0
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A better ordering

1   1   1   0   0   0   0   0   0   0
1   1   1   1   0   0   0   0   0   0
1   1   0   1   0   1   0   0   0   0
0   1   0   1   1   0   0   0   0   0
0   1   1   1   1   1   1   0   0   0
0   0   1   1   1   1   1   1   0   0
0   0   0   1   1   1   1   0   1   0
0   0   0   0   1   1   1   1   0   1
0   0   0   0   0   1   1   1   1   0
0   0   0   0   0   0   1   1   1   1

A smaller Lazarus
count
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Find small total orders (fragments)
from 0-1 occurrence data

• Fragment: a total ordering of
a subset of observations

• E.g., C<A<D<F

• Intuitive interpretation:

• For most variables the
sequence of observations
has no pattern of the form
…1…0…1…

1   1   1   0   0   0   0   0   0   1
0   1   1   1   0   0   1   0   1   0
1   1   0   0   0   1   0   0   1   0
0   1   0   1   1   0   0   0   0
0   1   1   1   1   1   1   0   0   0
0   0   1   1   1   1   1   1   0   0
0   0   0   1   1   1   1   0   1   0
0   0   0   0   1   1   1   1   0   1
0   1   0   1   0   1   1   1   1   0
1   0   1   0   0   0   1   1   1   1

C
A
D
F
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Fragments of order
• 0/1 data set
• Fragment of order f is a sequence of observations

A1 < A2 < A3 < … < Ak

• An variable t disagrees with fragment f, if for some i<j<k
we have Ai=Ak=1, but Aj=0

• Otherwise t agrees with f:
A1 < A2 < A3 < … < Ak

• Then the column for t has the form
0 0 …0 0 1 1 … 1 1 0 0 … 0 0

for the observations in f
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Example

1

0

0

0

1

0

111E

111F

011D

100C

011B

101A

A<B<C<D:                               dis          ag dis          dis
1101       0100  0101       1010

B<D<F<A:                               ag dis          ag ag
1111       1010   1110      0011
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What is a good fragment of order?

• A sequence f of rows, say, A < D < B < C

• Da(f): the number of variables disagreeing with the
ordering

• Fr(f): the number of variables having at least 2 ones in
the rows of f

• A good fragment has high Fr(f) and low Da(f)
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What is a good fragment of order?

111E

111F

001D

100C

111B

001A
We want to find orders such
that most variables agree
with the order

A < B < C < D
2 variables agree
1 disagrees variable disagrees with

an ordering: a Lazarus event
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What is a good fragment of order?

A < B < C < D
5 observations agree,
0 disagree

But this ordering is not
very informative

Only 1 observation could
have disagreed!

1

1

0

0

0

1

111E

111F

000D

000C

111B

001A
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What is a good fragment of order?

Frequency Fr(f) of a fragment:
number of variables such
that there are at least 2 ones
in the variables of the ordering

Fr(A<B<C) = 2

Fr(A<B<C) = Fr(A<C<B)

Fr(E<C<D) = 3

Fr(A<C<D) = 1

Frequency Fr(f) does not depend
on the order of the observations in
the fragment

1

1

1

1

0

1

111E

111F

010D

000C

111B

001A
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What is a good fragment of order?

Da(f): number of variables
that disagree with fragment f

Da(A<B<C) = 0

Da(A<C<D<F) = 2 0

1

0

0

1

1

111E

011F

001D

110C

111B

101A
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What is a good fragment of order?

0110

1100

0100

1001

0110

DCBAA good fragment f has

high Fr(f)
low Da(f)
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Problem statement

• Given thresholds σ and γ

• Find all fragments of order f such that in the data

Fr(f) > σ

Da(f) < γ

• Find all submatrices that contain at least σ rows and are
within γ of having the consecutive ones property
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The definition has problems

111E

111F

111D

111C

111B

111A
Any fragment f of {A,B,C,D,E,F}
has

Fr(f)=3 and
Da(f)=0.

A good ordering has to
stand above its peers.
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Peers of a fragment

• Peers of a fragment f = A<B<C<D:
– all permutations of the observations occurring in f

• The fragment f and its peer g have Fr(f)=Fr(g)

• A good fragment f has smaller Da(f) than its peers

• Da(f) = Da(fR): a fragment and its reverse have the same
number of disagreeing variables
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Problem statement

• Given thresholds σ and γ
• Find all fragments of order f such that in the data

Fr(f) > σ

Da(f) < γ

• and the fragment has smaller Da value than its peers
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How to avoid noninformative rows

0

1

1

1

000D

111C

111B

111A

D does not contribute
in any way to
A<B<C<D

Require that all
subfragments h satisfy
Fr(h)> σ and Da(h)> γ

h=C<D does not satisfy
Fr(h)> σ
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Problem statement

• Given thresholds σ and γ
• Find all fragments of order f such that in the data

Fr(f) > σ

Da(f) < γ

• and all subfragments of f satisfy these
• and the fragment has smaller Da value than its peers
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Algorithm

• How to find fragments with the specific properties?
• Start from fragments of length 2

– No disagreements are possible
– Only the bound Fr(f)> σ to be tested

• Iteration:
• Assume fragments of length k-1 are known
• Then we can build candidate fragments of length k
• Continue until no new patterns are found

• A complete algorithm: all fragments will be found
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Monotonicity property

• Fragment A1 < A2 < A3 < … < Ak can satisfy the
requirements only if all subfragments of length k-1 satisfy
them:

A1 < A2 < A3 < … < Ak-2 < Ak-1

A1 < A2 < A3 < … < Ak-2 < Ak

…
A2 < A3 < … < Ak-1 < Ak

• All these have to be in the collection of fragments of size
k-1
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Algorithm

• Find F2, fragments of size 2
• C = all triples A<B<C such that A<B, A<C, and B<C are in F2
• kß3

• While C is not empty
compute Da(f) for all f in C
Fkß{f in C | Fr(f)> σ and Da(f)< γ }
kßk+1
Cßall fragments of length k such that all the subfragments of

length k-1 are in Fk
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Complexity of the algorithm

• Potentially exponential in the number of variables

• |F+C| = the size of the answer + all the candidates

• Proportional to
|F+C| n m

for a matrix with n rows and m columns

• Too low values of σ or too high values of γ will lead to
huge outputs
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Experimental results

• Data about students and courses
• Observations: students
• Variables: courses
• D(s,c)=1 if student s has taken course c
• Here we know the true ordering

– Or actually two: official ordering
– Real order in which the student took the courses
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Part of the recommendations
Discovered fragment f
Fr(f)=1361, Da(f)=3.2%
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Results
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Results (paleontological data)

• Fragments for sites

• Or transpose the matrix: fragments for species

• Sequences of sites such that there are very few Lazarus
events

• Provide ways of looking at projections of the data

• Can be used to find partial orders
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Results (cont.)

• What does one do with the results?

• Given a single fragment f, are Fr(f) and Da(f) somehow
unusual?

• Approaches like DuMouchel & Pregibon, ”Empirical
Bayes Screening for Multi-Item Associations”, 2001
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Example: words in documents

• Represent collections of documents as term vectors
• Which words occur (1) in the document or not (0)
• Very large dimensionality, lots of observations
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Example from Citeseer

What does this tell us about these terms?
Databases and selectivity estimation together
do not occur without queries

Databases < queries < selectivity estimation
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Example from Google Scholar
• prior distribution – MCMC

151,000 documents

• prior distribution MCMC
2950 documents

• – prior distribution MCMC
1050 documents

• prior – distribution MCMC
165 documents

prior < distribution < MCMC
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Themes of the talk

• Find small total orders from 0-1 data

• Finding partial orders from 0-1 data

• Find total orders for 0-1 data
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Finding partial orders from 0-1 data
• Model: a partial order over all observations

• Loglikelihood: proportional to the number of cases the
observed occurrence patterns violate the continuity of
species

• Prior: prefer partial orders that are as specific as
possible

• Task: find a model with high likelihood * prior

• Algorithm: Find fragments and use heuristic search to
build a good partial order
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Why partial orders?

• Determining the ages of sites is difficult
• Radioisotope methods apply only to few sites
• In paleontology the so-called MN system: 18 classes for

the last 25 Ma
• Classes are assigned by ad hoc methods

• Searching for a total order might not be a good idea
• The MN system is a partial order
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Finding partial orders from data

• How to find a partial order that
fits well with the data?

• What does this mean?
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What is a good partial order?

• The Lazarus count of a species with respect to a partial
order P:
– For how many sites the species was extinct at the site,

but extant before and after it (as determined by P)
– The same definition as for total orders

• A good partial order has small Lazarus count

• Can be formulated as a likelihood (a Lazarus event is a
false positive)
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1115

1114

1003

0112

0011

No Laz No LazLaz
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What is a good partial order?

• Find a partial order that has a low Lazarus count
• The trivial partial order has Lazarus count 0
• Want to find a partial order that is specific (close to a

total order) and agrees with the data
• Measures of specificity:

– the number of linear extensions of P (hard to
compute)

– number of edges in P
• Find a partial order that has high

specificity * likelihood
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Algorithm for finding partial orders

• Compute fragments from the unordered data

• E.g., A < D < B < E < F and B < E < C

• Form a precedence matrix: in what fraction of the
fragments does A precede B

• Form a partial order that approximates the precedence
matrix (heuristic search)
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Fragments and reverse fragments

• The fragment generation will produce for each fragment f
also its reverse fR

• The pairwise precedence matrix would be useless

• Divide the fragments into two classes (graph cutting)
• Discard one class
• Build the precedence matrix
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From precedence matrix to partial order

• Heuristic search
• Add edges to the partial order so that the match with the

precedence matrix improves
• Keep track of transitivity

• Difficult (and interesting) algorithmic problem
• Empirical results look good

• Very recent theoretical results
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Early Miocene

Transfer to
late Miocene
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Themes of the talk

• Find small total orders from 0-1 data

• Finding partial orders from 0-1 data

• Find total orders for 0-1 data
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Finding good total orders for a matrix

• Given a site-genus matrix
• What is a good total ordering for the rows?
• One in which there are as few Lazarus events as

possible
• Model class: total orders
• Loglikelihood proportional to the number of Lazarus

events
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How to find such an ordering of the rows?

• If there is an ordering that has no Lazarus events, it can
be found in linear time (Booth & Lueker)
– consecutive ones property

• But normally there are (lots of) Lazarus events



29

Algorithmic methods in data mining, Fall 2005 Heikki Mannila

Finding good total orders for a matrix

• The problem of finding the best ordering of the matrix is
NP-hard

• Finding whether there is a submatrix of size k that has
no Lazarus events is NP-hard

• The fragment method finds such submatrices

• Local search, traveling salesperson approaches

• Spectral methods
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Spectral ordering for finding good total
orders for a matrix

• Spectral ordering

• Compute a similarity measure s(i,j)
between sites (e.g., dot product)

• Laplacian L(i,j)
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• The eigenvector v corresponding to the
second smallest eigenvalue of L satisfies

• Maps the points to 1-d, keeping similar points
close to each other

• The values vi can be used to order the points
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Empirical observation

• The eigenvector seems to minimize also Lazarus events

• Even better than some combinatorial algorithms

• Why?

• No real theoretical understanding
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Site-genus -matrix
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After spectral ordering
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Fortelius, Jernvall, Gionis, Mannila, to appear in Paleobiology
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Questions
• Computational

– Why does it work so well?
– How well does it actually work (what is the smallest

number of Lazarus events for this data?)
– How to interpret the coefficients?

• Paleontological
– Fully based on the occurrence matrix (excellent and bad)
– Site-species data is only one type of data; how to use

other types of data for the ordering?
– …
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Rough estimates of the sizes of
the model classes

• N observations
• Fragments of size at most k

– individual fragments

– sets of fragments

• Partial orders

• Total orders

kN

)( 2

2 NO

!N

kN2
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Concluding remarks

• General task: finding order from unordered data
• Here using species continuity as the additional

information
• Other applications are possible

• Model classes
– Fragments
– Partial orders
– Total orders
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Lots of open questions

• The unreasonable effectiveness of spectral methods on
discrete optimization task

• Approximation guarantees

• Fragments from other applications

• MDL description of sequences via partial orders

• Etc.
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