Chapter 12.

Finding fragments of orders, partial orders, and total orders from 0-1 data

Algorithmic methods in data mining, Fall 2005 Heikki Mannila

Themes of the chapter

- Given a 0/1 a matrix
- Rows: observations, columns variables
- Can one find ordering information for the observations?
- Without additional assumptions, no; with some assumptions, yes
- Paleontological application:
 - find orders for subsets of fossil sites
 - a good ordering for (a subset of) the rows is one where the 1s are consecutive
- Also other applications

Themes of the chapter

- Finding small total orders (fragments) from 0-1 data
 - Local models/patterns
- Finding partial orders from 0-1 data
 - A global model
- Find total orders for 0-1 data
 - A global model

Algorithmic methods in data mining, Fall 2005 Heikki Mannila

Finding small total orders (fragments) from 0-1 data

- Model: a subset of observations and a total order on the subset
- Task: find all such models fulfilling certain criteria
- Algorithm: a pattern discovery algorithm (levelwise search)

Finding partial orders from 0-1 data

- Model: a partial order over all observations
- Loglikelihood: proportional to the number of cases the observed occurrence patterns violate the continuity of species
- Prior: prefer partial orders that are as specific as possible
- Task: find a model with high likelihood * prior
- Algorithm: Find fragments and use heuristic search to build a good partial order

Algorithmic methods in data mining, Fall 2005 Heikki Mannila

Find total orders for 0-1 data

- Model: a total order
- Loglikelihood: how many cases the observed occurrence patterns violate the continuity of species
- Task: find the best total order for the observations
- · Algorithm: spectral method

Type of data

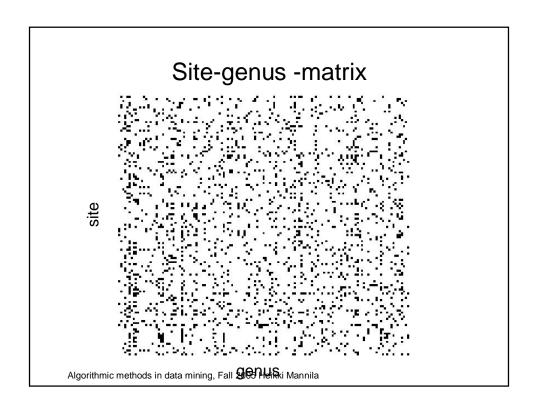
- 0-1 data, large number of variables
- Examples:
 - Occurrences of words in documents
 - Occurrences of species in paleontological sites
 - Occurrence of a particular motif in a promoter region of a gene
- Typically the data is sparse: only a few 1s
- Asymmetry between 0s and 1s
 - A "1" means that there really was something
 - A "0" has less information (in a way)

Algorithmic methods in data mining, Fall 2005 Heikki Mannila

Example

- Paleontological data from the NOW (Neogene Mammal Database)
- Fossil sites (one location, one layer)
- Each site contains fossils that are about the same age (+- 1 Ma)
- Variables: species/genera
- A "1" is reasonably certain
- A "0" might be due to several reasons
 - The species was not extant at that time
 - The remains did not fossilize
 - The tooth was overlooked

– ...

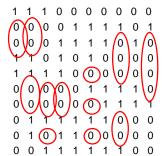


Background knowledge • Species do not vanish and return • An ordering of the sites with a "0" between "1"s is improbable 1 time 0 1 0 1 1 Algorithmic methods in data mining, Fall 2005 Heikki Mannila

Example: seriation in paleontological data

- Given data about the occurrences of genera in fossil sites
- Want to find an ordering in which occurrences of a genus are consecutive
- Lazarus count: how many 0s are between 1s

Genus



Algorithmic methods in data mining, Fall 2005 Heikki Mannila

A better ordering

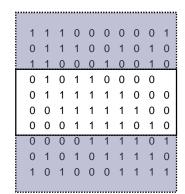
A smaller Lazarus count

Find small total orders (fragments) from 0-1 occurrence data

С

Α

- Fragment: a total ordering of a subset of observations
- E.g., C<A<D<F
- Intuitive interpretation:
- For most variables the sequence of observations has no pattern of the form ...1...0...1...



Algorithmic methods in data mining, Fall 2005 Heikki Mannila

Fragments of order

- 0/1 data set
- Fragment of order f is a sequence of observations $A_1 < A_2 < A_3 < ... < A_k$
- An variable t disagrees with fragment f, if for some i<j<k we have A=Ak=1, but A=0
- Otherwise t agrees with f:

$$A_1 < A_2 < A_3 < \dots < A_k$$

Then the column for t has the form
 0 0 ... 0 0 1 1 ... 1 1 0 0 ... 0 0
 for the observations in f

Example

Α	1	0	0	1
В	1	1	1	0
С	0	0	0	1
D	1	0	1	0
Е	1	0	1	1
F	1	1	1	1

A<B<C<D:

dis ag dis dis 1101 0100 0101 1010

B<D<F<A:

ag dis ag ag 1111 1010 1110 0011

Algorithmic methods in data mining, Fall 2005 Heikki Mannila

What is a good fragment of order?

- A sequence f of rows, say, A < D < B < C
- Da(f): the number of variables disagreeing with the ordering
- Fr(f): the number of variables having at least 2 ones in the rows of f
- A good fragment has high Fr(f) and low Da(f)

What is a good fragment of order?

We want to find orders such that most variables agree with the order

А	1	0	0
В	1	1	1
С	0	0	1
D	1	0	0
Е	1	1	1
F	1	1	1

A < B < C < D 2 variables agree 1 disagrees

variable disagrees with an ordering: a Lazarus event

Algorithmic methods in data mining, Fall 2005 Heikki Mannila

What is a good fragment of order?

A < B < C < D 5 observations agree, 0 disagree

Α	1	0	1	0
В	1	1	0	1
С	0	0	0	0
D	0	0	0	0
Е	1	1	1	1
F	1	1	1	1

But this ordering is not very informative

Only 1 observation could have disagreed!

What is a good fragment of order?

Frequency Fr(f) of a fragment: number of variables such that there are at least 2 ones in the variables of the ordering

Α	1	0	1	0
В	1	1	0	1
С	0	0	1	0
D	0	1	1	0
Е	1	1	1	1
F	1	1	1	1

$$Fr(A < B < C) = 2$$

$$Fr(A < B < C) = Fr(A < C < B)$$

Fr(E<C<D)=3 Frequency Fr(f) does not depend

on the order of the observations in

Fr(A<C<D) = 1 the fragment

Algorithmic methods in data mining, Fall 2005 Heikki Mannila

What is a good fragment of order?

Da(f): number of variables that disagree with fragment f

$$Da(A < B < C) = 0$$

$$Da(A < C < D < F) = 2$$

Α	1	0	1	1
В	1	1	1	1
С	0	1	0	1
D	1	0	0	0
Е	1	1	1	1
F	1	1	0	0

What is a good fragment of order?

A good fragment f has

high Fr(f) low Da(f)

Α	В	С	D
0	1	1	0
1	0	0	1
0	0	1	0
0	1	1	0
0	0	1	1

Algorithmic methods in data mining, Fall 2005 Heikki Mannila

Problem statement

- Given thresholds σ and γ
- Find all fragments of order f such that in the data

$$Fr(f) > \sigma$$

$$Da(f) < \gamma$$

• Find all submatrices that contain at least σ rows and are within γ of having the consecutive ones property

The definition has problems

Any fragment f of {A,B,C,D,E,F} has

Fr(f)=3 and Da(f)=0.

A good ordering has to stand above its peers.

Α	1	1	1
В	1	1	1
С	1	1	1
D	1	1	1
Е	1	1	1
F	1	1	1

Algorithmic methods in data mining, Fall 2005 Heikki Mannila

Peers of a fragment

- Peers of a fragment f = A<B<C<D:
 - all permutations of the observations occurring in f
- The fragment f and its peer g have Fr(f)=Fr(g)
- A good fragment f has smaller Da(f) than its peers
- Da(f) = Da(f^R): a fragment and its reverse have the same number of disagreeing variables

Problem statement

- Given thresholds σ and γ
- Find all fragments of order f such that in the data

$$Fr(f) > \sigma$$

$$Da(f) < \gamma$$

• and the fragment has smaller Da value than its peers

Algorithmic methods in data mining, Fall 2005 Heikki Mannila

How to avoid noninformative rows

D does not contribute in any way to A<B<C<D

	Α	1	1	1	1
	В	1	1	1	1
Э	С	1	1	1	1
	D	0	0	0	0

Require that all subfragments h satisfy $Fr(h) > \sigma$ and $Da(h) > \gamma$

h=C<D does not satisfy

 $Fr(h) > \sigma$

Problem statement

- Given thresholds σ and γ
- · Find all fragments of order f such that in the data

 $Fr(f) > \sigma$

 $Da(f) < \gamma$

- and all subfragments of f satisfy these
- and the fragment has smaller Da value than its peers

Algorithmic methods in data mining, Fall 2005 Heikki Mannila

Algorithm

- How to find fragments with the specific properties?
- Start from fragments of length 2
 - No disagreements are possible
 - Only the bound $Fr(f) > \sigma$ to be tested
- Iteration:
- Assume fragments of length k-1 are known
- Then we can build candidate fragments of length k
- Continue until no new patterns are found
- · A complete algorithm: all fragments will be found

Monotonicity property

 Fragment A₁ < A₂ < A₃ < ... < A_k can satisfy the requirements only if all subfragments of length k-1 satisfy them:

$$A_1 < A_2 < A_3 < \dots < A_{k-2} < A_{k-1}$$

 $A_1 < A_2 < A_3 < \dots < A_{k-2} < A_k$
 \dots
 $A_2 < A_3 < \dots < A_{k-1} < A_k$

 All these have to be in the collection of fragments of size k-1

Algorithmic methods in data mining, Fall 2005 Heikki Mannila

Algorithm

- Find F2, fragments of size 2
- C = all triples A<B<C such that A<B, A<C, and B<C are in F2
- kß3
- · While C is not empty

```
compute Da(f) for all f in C Fkß {f in C | Fr(f)> \sigma and Da(f)< \gamma} kß k+1
```

Cß all fragments of length k such that all the subfragments of length k-1 are in Fk

Complexity of the algorithm

- · Potentially exponential in the number of variables
- |F+C| = the size of the answer + all the candidates
- Proportional to

|F+C| n m

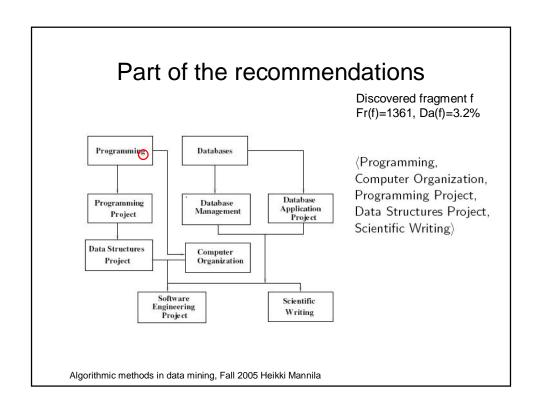
for a matrix with n rows and m columns

• Too low values of σ or too high values of γ will lead to huge outputs

Algorithmic methods in data mining, Fall 2005 Heikki Mannila

Experimental results

- · Data about students and courses
- · Observations: students
- · Variables: courses
- D(s,c)=1 if student s has taken course c
- · Here we know the true ordering
 - Or actually two: official ordering
 - Real order in which the student took the courses



Results

σ	au	Max l	$ \mathcal{T} $	α	β
(in %)	(in %)			(in %)	(in %)
20	0	3	2	96.3	99.5
20	2.5	5	578	48.6	70.5
20	5	6	1528	40.0	66.0
15	0	3	28	89.9	98.6
15	2.5	6	1934	46.8	78.2
15	5	7	5158	38.9	72.3

Results (paleontological data)

- Fragments for sites
- Or transpose the matrix: fragments for species
- Sequences of sites such that there are very few Lazarus events
- Provide ways of looking at projections of the data
- · Can be used to find partial orders

Algorithmic methods in data mining, Fall 2005 Heikki Mannila

Results (cont.)

- What does one do with the results?
- Given a single fragment f, are Fr(f) and Da(f) somehow unusual?
- Approaches like DuMouchel & Pregibon, "Empirical Bayes Screening for Multi-Item Associations", 2001

Example: words in documents

- Represent collections of documents as term vectors
- Which words occur (1) in the document or not (0)
- · Very large dimensionality, lots of observations

Algorithmic methods in data mining, Fall 2005 Heikki Mannila

Example from Citeseer

"database system"	"query"	"selectivity estimation"	Hits
1	1	1	49
1	1	0	1930
0	1	1	221
1	0	1	4

What does this tell us about these terms? Databases and selectivity estimation together do not occur without queries

Databases < queries < selectivity estimation

Example from Google Scholar

- prior distribution MCMC
 151,000 documents
- prior distribution MCMC 2950 documents
- prior distribution MCMC
 1050 documents
- prior distribution MCMC
 165 documents

prior < distribution < MCMC

Algorithmic methods in data mining, Fall 2005 Heikki Mannila

Themes of the talk

- Find small total orders from 0-1 data
- Finding partial orders from 0-1 data
- Find total orders for 0-1 data

Finding partial orders from 0-1 data

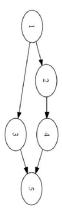
- Model: a partial order over all observations
- Loglikelihood: proportional to the number of cases the observed occurrence patterns violate the continuity of species
- Prior: prefer partial orders that are as specific as possible
- Task: find a model with high likelihood * prior
- Algorithm: Find fragments and use heuristic search to build a good partial order

Algorithmic methods in data mining, Fall 2005 Heikki Mannila

Why partial orders?

- · Determining the ages of sites is difficult
- Radioisotope methods apply only to few sites
- In paleontology the so-called MN system: 18 classes for the last 25 Ma
- Classes are assigned by ad hoc methods
- Searching for a total order might not be a good idea
- The MN system is a partial order

Finding partial orders from data

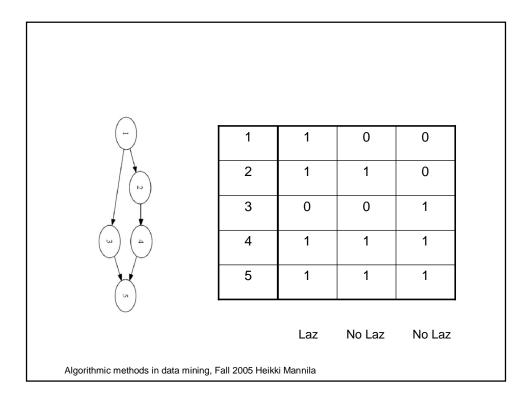


- How to find a partial order that fits well with the data?
- What does this mean?

Algorithmic methods in data mining, Fall 2005 Heikki Mannila

What is a good partial order?

- The Lazarus count of a species with respect to a partial order P:
 - For how many sites the species was extinct at the site, but extant before and after it (as determined by P)
 - The same definition as for total orders
- A good partial order has small Lazarus count
- Can be formulated as a likelihood (a Lazarus event is a false positive)



What is a good partial order?

- · Find a partial order that has a low Lazarus count
- The trivial partial order has Lazarus count 0
- Want to find a partial order that is specific (close to a total order) and agrees with the data
- · Measures of specificity:
 - the number of linear extensions of P (hard to compute)
 - number of edges in P
- Find a partial order that has high specificity * likelihood

Algorithm for finding partial orders

- · Compute fragments from the unordered data
- E.g., A < D < B < E < F and B < E < C
- Form a precedence matrix: in what fraction of the fragments does A precede B
- Form a partial order that approximates the precedence matrix (heuristic search)

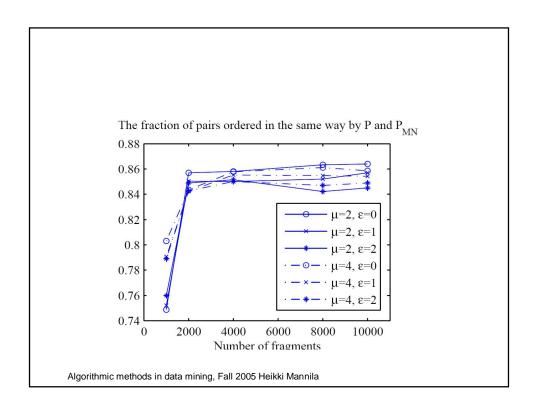
Algorithmic methods in data mining, Fall 2005 Heikki Mannila

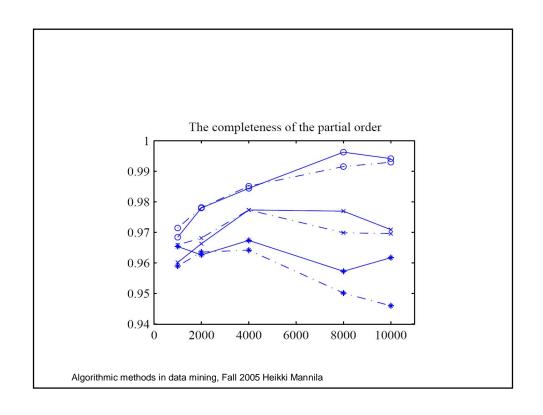
Fragments and reverse fragments

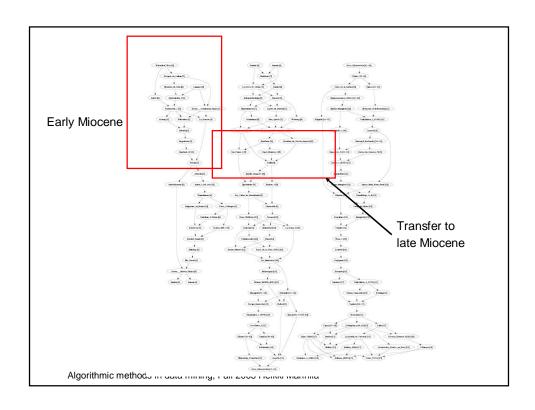
- The fragment generation will produce for each fragment f also its reverse f^R
- The pairwise precedence matrix would be useless
- Divide the fragments into two classes (graph cutting)
- · Discard one class
- Build the precedence matrix

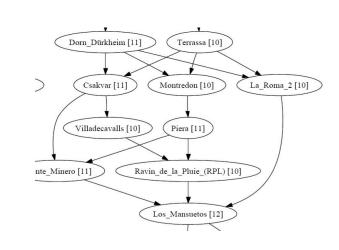
From precedence matrix to partial order

- · Heuristic search
- Add edges to the partial order so that the match with the precedence matrix improves
- Keep track of transitivity
- Difficult (and interesting) algorithmic problem
- Empirical results look good
- Very recent theoretical results









approximately 6-7 MN classes of sites will be re-evaluated on the basis of the partial order.

Algorithmic methods in data mining, Fall 2005 Heikki Mannila

Themes of the talk

- · Find small total orders from 0-1 data
- Finding partial orders from 0-1 data
- Find total orders for 0-1 data

Finding good total orders for a matrix

- Given a site-genus matrix
- What is a good total ordering for the rows?
- One in which there are as few Lazarus events as possible
- · Model class: total orders
- Loglikelihood proportional to the number of Lazarus events

Algorithmic methods in data mining, Fall 2005 Heikki Mannila

How to find such an ordering of the rows?

- If there is an ordering that has no Lazarus events, it can be found in linear time (Booth & Lueker)
 - consecutive ones property
- But normally there are (lots of) Lazarus events

Finding good total orders for a matrix

- The problem of finding the best ordering of the matrix is NP-hard
- Finding whether there is a submatrix of size k that has no Lazarus events is NP-hard
- · The fragment method finds such submatrices
- Local search, traveling salesperson approaches
- Spectral methods

Algorithmic methods in data mining, Fall 2005 Heikki Mannila

Spectral ordering for finding good total orders for a matrix

- Spectral ordering
- Compute a similarity measure s(i,j) between sites (e.g., dot product)
- Laplacian L(i,j)

$$L(i,j) = \begin{cases} -s(i,j), & i \neq j \\ \sum_{k} s(i,k), & i = j \end{cases}$$

 The eigenvector v corresponding to the second smallest eigenvalue of L satisfies

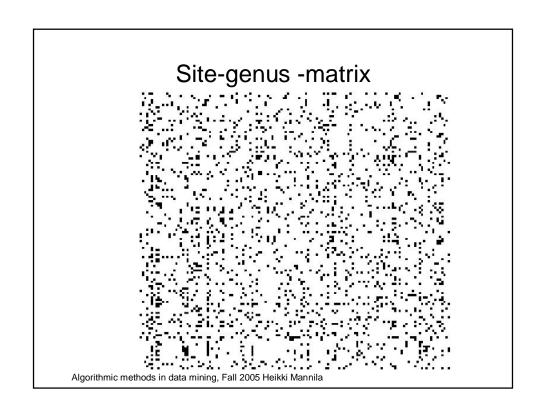
$$\sum_{i} v_{i} = 0$$
, $\sum_{i} v_{i}^{2} = 1$, and $\sum_{i} s(i, j)(v_{i} - v_{j})^{2} = 1$ is minimized.

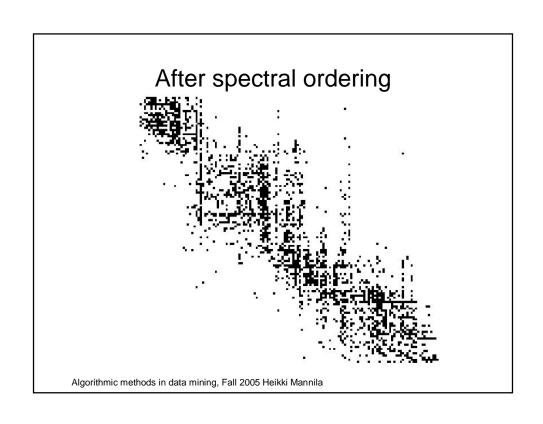
- Maps the points to 1-d, keeping similar points close to each other
- The values v_i can be used to order the points

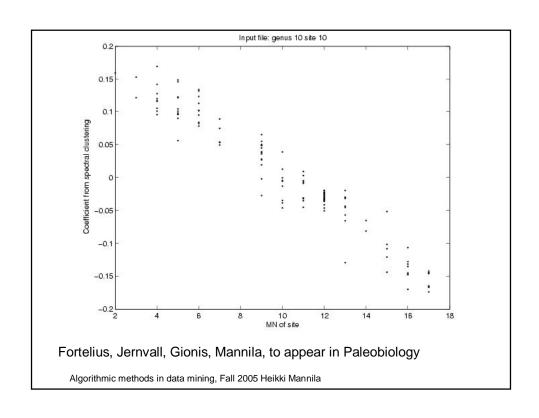
Algorithmic methods in data mining, Fall 2005 Heikki Mannila

Empirical observation

- The eigenvector seems to minimize also Lazarus events
- Even better than some combinatorial algorithms
- Why?
- No real theoretical understanding







gl sl gn	sn	c	Nh	ch	NMN	cMN
10 10 139		0.97	21	0.98	119	0.96
10 5 139		0.96	35	0.97	230	0.95
5 10 198		0.97	22	0.99	125	0.97
5 5 201	1 273	0.96	35	0.98	240	0.96
2 10 281	1 147	0.97	22	0.99	132	0.97
2 2 285		0.94	46	0.97	444	0.94
		0.97	22	0.99	132	0.97

gl	sl	Ls	LMN	Lage	Lazs	LazMN	Lazage
10	10	-4881	-5153	-4998	3792	4174	3974
10	5	-9038	-9573	-9416	9728	10906	10563
5	10	-6008	-6455	-6275	5220	5901	5622
5	5	-10723	-11340	-11132	13003	14638	14147
2	10	-6904	-7429	-7234	6398	7314	6969
2	2	-16660	-17610	-17323	30568	34886	33621

Algorithmic methods in data mining, Fall 2005 Heikki Mannila

Questions

- Computational
 - Why does it work so well?
 - How well does it actually work (what is the smallest number of Lazarus events for this data?)
 - How to interpret the coefficients?
- Paleontological
 - Fully based on the occurrence matrix (excellent and bad)
 - Site-species data is only one type of data; how to use other types of data for the ordering?

– ...

Rough estimates of the sizes of the model classes

- N observations
- · Fragments of size at most k
 - $-N^k$ individual fragments
 - -2^{N^k} sets of fragments
- Partial orders $2^{O(N^2)}$
- Total orders N!

Algorithmic methods in data mining, Fall 2005 Heikki Mannila

Concluding remarks

- · General task: finding order from unordered data
- Here using species continuity as the additional information
- · Other applications are possible
- Model classes
 - Fragments
 - Partial orders
 - Total orders

Lots of open questions

- The unreasonable effectiveness of spectral methods on discrete optimization task
- Approximation guarantees
- · Fragments from other applications
- MDL description of sequences via partial orders
- Etc.

Algorithmic methods in data mining, Fall 2005 Heikki Mannila

References

- A. Gionis, T. Kujala and H. Mannila: Fragments of order. *ACM SIGKDD 2003*, p. 129-136.
- A. Ukkonen, M. Fortelius, H. Mannila: Finding partial orders from unordered 0-1 data. ACM SIGKDD 2005, p. 285-293.
- M. Fortelius, A. Gionis, J. Jernvall, H. Mannila, Spectral Ordering and Biochronology of European Fossil Mammals, to appear in *Paleobiology*.