
Chapter 10: Covering problems

Algorithmic Methods of Data Mining, Fall 2005, Chapter 10: Covering problems 1

10. Covering problems

• Given a set of concepts (rules etc.) that apply to examples (rows

of data etc.)

• The concept covers the examples

• How to find good small collections of concepts?

• Not all concepts satisfying certain conditions

Example: association rules

• For fixed B

• Given a bunch of rules of the form W ⇒ B

• Each rule applies (covers) the rows t such that t[W] = 1, i.e.,

W ⊆ t

• Find a set of rules which cover all examples in a given subset of

the data

• Find a set of rules which cover as much of the data as possible

Algorithmic Methods of Data Mining, Fall 2005, Chapter 10: Covering problems 3

Prototype problems

• Set cover problem: find a small set of concepts such that all

examples are covered by some concept in the set

• Best collection problem: find a set of size k of concepts that

covers as many examples as possible

• Both problems are NP-complete

• Simple approximation algorithms with provable properties

Set cover problem

• Given a universe X = p1, . . . , pn

• Sets S1, S2, . . . , Sm ⊆ X, ∪Si = X

• F = {S1, S2, . . . , Sm}.
• Question: find the smallest number of set from F whose union is

X

• I.e., find a smallest subcollection C ⊆ F such that

∪S∈CS = X.

• NP-complete (what does it mean?)

Algorithmic Methods of Data Mining, Fall 2005, Chapter 10: Covering problems 5

Trivial algorithm

• Try all subcollections of F
• Select the smalles one that covers X

• Running time O(2|F||X|)
• Too slow

Greedy algorithm for set cover

• Select first the largest set S

• Remove the elements of S from X

• Recompute the sizes of the sets

• Go back to the first step

Algorithmic Methods of Data Mining, Fall 2005, Chapter 10: Covering problems 7

As an algorithm

1. U = X;

2. C = ∅;
3. While U is not empty do

• For all S ∈ F let aS = |Yi ∩ U |
• Let S be such that aS is maximal;

• C = C ∪ {S}
• U = U\S

How can this go wrong?

• No global consideration of how good or bad the set will be

Algorithmic Methods of Data Mining, Fall 2005, Chapter 10: Covering problems 9

Weighted version

• Each set S ∈ F has a cost c(S)

• Compute the number of elements per unit cost: (S ∩ U)/c(S)

• At each step, select the S for which this is maximal

Running time of the algorithm

• Polynomial in |X| and F
• At most min(|X|, |F|) iterations of the loop

• Loop body takes time O(|X||F|)
• Running time O(|X||F|min(|χ|, |F|))
• Can be implemented in linear time O(

∑
S∈F |S|)

Algorithmic Methods of Data Mining, Fall 2005, Chapter 10: Covering problems 11

Related problems

• Given a graph G = (V, E)

• Independent set: find the largest set V ′ of vertices such that there

is no edge between any two vertices in V ′

• Glique: find the largest set of vertices V ′ such that all pairs of

vertices of V ′ are connected by an edge

• Clique in G is an independent set in G = (V, V × V \E)

Related problems

• Given a graph G = (V, E)

• Vertex cover: find the smallest subset V ′ ⊆ V such that for each

edge (u, v) ∈ E we have u ∈ V ′ or v ∈ V ′

Algorithmic Methods of Data Mining, Fall 2005, Chapter 10: Covering problems 13

Approximation algorithms

• Consider a minimization problem

• Instance I, cost of optimal solution α∗(I), approximate solution

with cost α(I)

• The algorithm has approximation ratio c(n), if for all instances of

size at most n we have α(I) ≤ c(n)α∗(I)

• The greedy algorithm has approximation ratio O(log n)
(i.e., d log n for some d).

Approximation algorithm for vertex cover

• C = ∅;
• Select a random edge (u, v)

• C = C ∪ {u, v};
• Remove all edges that are incident either with u or with v

• Repeat until no edges remain

Algorithmic Methods of Data Mining, Fall 2005, Chapter 10: Covering problems 15

Approximation guarantee

• The result is a vertex cover (why?)

• No two selected edges share an endpoint

• For any edge (u, v) at least one of u and v has to belong to any

vertex cover

• For any edge (u, v) at least one of u and v has to belong to the

optimal vertex cover

• Thus α(G) ≤ 2α∗(G) for all G

Analysis of the greedy approximation algorithm for set cover

• H(d) =
∑d

i=1 1/i: the ith harmonic number

• Greedy approximation algorithm has approximation ratio H(s),
where s is the size of the largest set in F

• (Trivial bound; s)

• H(s) ≈ ln s, i.e., the bound is quite good (s ≤ |X|)

Algorithmic Methods of Data Mining, Fall 2005, Chapter 10: Covering problems 17

Proof.

• Source: Cormen et al., Introduction to Algorithms

• Optimal set cover C∗ and the cover C produced by the greedy

algorithm

• Si: the ith set selected by an algorithm

• Cost of 1 (counting the number of sets)

• Spread this among the elements covered for the first time by Si

• Cost to item x is cx = (|Si \ (S1 ∪ . . . Si−1)|)−1

• Costs by set Si sum up to one

• |C| =
∑

x∈X cx

C∗ covers X

|C| =
∑

x∈X

cx ≤
∑

S∈C∗

∑

x∈S

cx

For any set S ∈ F we have (proof separate)

∑

x∈S

cx ≤ H(|S|)

Thus

|C| ≤
∑

S∈C∗
H(|S|)

and hence i

|C| ≤ C∗H(s)

where s = max{|S| : S ∈ F}

Algorithmic Methods of Data Mining, Fall 2005, Chapter 10: Covering problems 19

Best collection problem

• Given some concepts (rules etc.)

• Find the best collection of k rules

• For example, find the k sets whose union has maximum size

• Maximization problem, quality f(C) of the result = number of

elements in ∪S∈CS

• Simple approximation algorithm has bound

α ≥ e − 1
e

α∗

Submodular functions

• The result is very general

• Concepts F , task fo find the best subcollection C∗ ⊆ F of size k

• Solution function f should satisfy for all C

f(C) ≥ 0

and for all C ⊆ D ⊆ F and S ∈ F

f(C ∪ {S}) − f(C) ≥ f(D ∪ {S}) − f(D)

i.e., the improvement obtained by adding S may not increase

when moving to a larger solution

• f is submodular; the result holds for all such functions

Algorithmic Methods of Data Mining, Fall 2005, Chapter 10: Covering problems 21

Greedy approximation algorithm

• C = ∅
• Gain of S in the context of C is f(C ∪ {S}) − f(C)

• Select the concept S that has the highest gain

• C := C ∪ {S}
• Repeat until C has k elements

Basic theorem

Let C∗
k be the optimal set of k concepts

Let Ci be the ith set formed by the greedy algorithm.

Assume

f(Ci) − f(Ci−1) ≥ 1
k

(f(C∗
k) − f(Ci−1))

Then

f(Ck) ≥ e − 1
e

f(C∗
k)

Proof. Separate.

Algorithmic Methods of Data Mining, Fall 2005, Chapter 10: Covering problems 23

Why does the assumption hold?

f(Ci) − f(Ci−1) ≥ 1
k

(f(C∗
k) − f(Ci−1))

f is submodular

the greedy approximation algorithm

The concept Ci \ Ci−1 is the one that maximizes the gain.

(Something open here.)

Applications

• Which functions are submodular?

• The concepts should not have interaction

• Variable selection?

Algorithmic Methods of Data Mining, Fall 2005, Chapter 11: Clustering2

Chapter 11: Clustering

Clustering

• Task: group observations into groups so that the observations

belonging to the same group are similar, whereas observations in

different groups are different

• Lots and lots of research in various areas

• Just scratching the surface here

Algorithmic Methods of Data Mining, Fall 2005, Chapter 11: Clustering 26

Basic questions?

• What does ”similar” mean?

• What is a good partition of the objects? I.e., how is the quality of

a solution measured?

• How to find a good partition of observations?

What does ”similar” mean?

• Some function of the attribute values of the observations

• Usual approach: Lp distance

L((x1, . . . , xn), (y1, . . . , yn)) = (
∑

i

(xi − yi)p)1/p

• Easy in 1-dimensional real case

• Already 2 dimensions cause problems: how to weigh the different

dimensions?

• Lots of problems

Algorithmic Methods of Data Mining, Fall 2005, Chapter 11: Clustering 28

Partition-based clustering

• Data mining algorithms: task; model; score function; search

• Task: partition the data into K disjoint sets of points

• The points within each set are as homogeneous as possible

• Measured by score function

• Often no clear model

Score functions for clustering

• d(x, y): distance between points x, y ∈ D

• Assume d is a metric

• C = (C1, C2, . . . , CK)

• Clusters should be compact

• Clusters should be as far from each other as possible

• Within cluster variation wc(C) and between cluster variation bc(C)

Algorithmic Methods of Data Mining, Fall 2005, Chapter 11: Clustering 30

• Cluster centers r1, . . . , rK : representative points from each

cluster, e.g., the centroid of the points

• Simple measure for within cluster variation

wc(C) =
K∑

k=1

wc(Ck) =
K∑

k=1

∑

x∈Ck

d(x, rk)2

• Between cluster variation

bc(C) =
∑

1≤j<k≤K

d(rj , rk)2

• wc(C) leads to spherical clusters

• Evaluation of bc(C) and wc(C)?

• O(n) and O(K2) operations

• Variations abound: define wc(Ck) as the maximum of the

minimum distance to another point in the same cluster

• Leads to elongated clusters

Algorithmic Methods of Data Mining, Fall 2005, Chapter 11: Clustering 32

The K-means algorithm

• randomly pick K cluster centers

• assign each point to the cluster whose mean is closest in a

Euclidean distance sense

• compute the mean vectors of the points assigned to each cluster

• use these as new centers

• repeat until convergence

As an algorithm

data points D = {x1, . . . , xn}
find K clusters {C1, . . . , CK}:

for k = 1, . . . , K let rk be a randomly chosen point from D;

while changes in clusters Ck happen do
form clusters:

for k = 1, . . . , K do
Ck = {x ∈ D | d(rk, x) ≤ d(rj , x) for all j = 1, . . . , K, j
= k};

od;

compute new cluster centers:

for k = 1, . . . , K do
rk = the vector mean of the points in Ck

od;

od;

Algorithmic Methods of Data Mining, Fall 2005, Chapter 11: Clustering 34

Properties of the K-means algorithm

• Finds a local optimum

• Converges often quite quickly

• Sometimes slow convergence

• For high dimensions the initial points can have a large influence

Hierarchical clustering

• Merge sets of points or divide sets of points

• Agglomerative or divisive

• Dendrograms (figures)

Algorithmic Methods of Data Mining, Fall 2005, Chapter 11: Clustering 36

Agglomerative clustering

for i = 1, . . . , n let Ci = {x(i)};
while there is more than one cluster left do

let Ci and Cj be the clusters

minimizing the distance D(Ck, Ch) between

any two clusters;

Ci = Ci ∪ Cj ;

remove cluster Cj ;

od;

Complexity

• Quadratic, at least, in the number of points

• Not usable for large sets of data

Algorithmic Methods of Data Mining, Fall 2005, Chapter 11: Clustering 38

What is the distance?

• How to define the distance between two clusters?

• Two sets of points

• Lots of alternatives

• Actually quite difficult to define a metric

Single-link distance

d(x, y) the distance between objects x and y

Dsl(Ci, Cj) = min
x,y

{d(x, y) | x ∈ Ci, y ∈ Cj}, (1)

chaining: long, elongated clusters

Algorithmic Methods of Data Mining, Fall 2005, Chapter 11: Clustering 40

Complete link

Furthest distance

Dfl(Ci, Cj) = max
x,y

{d(x, y) | x ∈ Ci, y ∈ Cj}, (2)

leads to equal colume (or at least diameter)

Other measures

• For vectors

• the centroid measure (the distance between two clusters is the

distance between their centroids)

• the group average measure (the distance between two clusters is

the average of all the distances between pairs of points, one from

each cluster)

• Ward’s measure for vector data (the distance between two clusters

is the difference between the total within cluster sum of squares

for the two clusters separately, and the within cluster sum of

squares resulting from merging the two clusters discussed above)

Algorithmic Methods of Data Mining, Fall 2005, Chapter 11: Clustering 42

Divisive methods

• start with a single cluster composed of all of the data points

• split this into components

• continue recursively

• Monothetic divisive methods split clusters using one variable at a

time

• Polythetic divisive methods make splits on the basis of all of the

variables together

• any intercluster distance measure can be used

• computationally intensive, less widely used than agglomerative

methods

Kleinberg’s impossibility theorem

• John Kleinberg, An impossibility theorem for clustering, NIPS

2002

• Clustering methods based on pairwise distances

• Three properties for clustering methods

• No algoritm can have all three

Algorithmic Methods of Data Mining, Fall 2005, Chapter 11: Clustering 44

Computational task

• A clustering function operates on a set S of n points

• No underlying space; S = {1, 2, . . . , n}
• Distance function: d : S × S → R with d(i, j) ≥ 0,

d(i, j) = d(j, i), and d(i, j) = 0 only if i = j

• (Metric: additionally have d(i, j) + d(j, k) ≥ d(i, k))

• Clustering function f : f(S, d) = Γ, where Γ is a partition of S

• (A partition)

Scale invariance

α > 0; distance function αd has values (αd)(i, j) = αd(i, j)
For any d and for any α > 0 we have f(d) = f(αd)

Algorithmic Methods of Data Mining, Fall 2005, Chapter 11: Clustering 46

Richness

The range of f is equal to the set of partitions of S

I.e., for any S and any partition Γ of S there is a distance function d

on S such that f(S, d) = Γ

Consistency

Shrinking distances between points inside a cluster and expanding

distances between points in different clusters does not change the

result.

Γ a partition of S

d, d′ two distance functions on S

d′ is a Γ-transformation of d, if

• for all i, j ∈ S in the same cluster of Γ we have d′(i, j) ≤ d(i, j)

• for all i, j ∈ S in the different cluster of Γ we have

d′(i, j) ≥ d(i, j)

Consistency: if f(S, d) = Γ and d′ is a Γ-transformation of d,

then f(S, d′) = Γ

Algorithmic Methods of Data Mining, Fall 2005, Chapter 11: Clustering 48

Examples

• Agglomerative clustering with single-link

• Repeatedly merge cluster whose distance is minimum

• Continue until a stopping criterion is met

– k-cluster stopping criterion: continue until there are k

connected components

– distance-r stopping criterion: continue until all distances

between clusters are larger than r

– scale-α stopping criterion: let ρ∗ be the maximum pairwise

distance; continue until all distances are larger than αρ∗

Examples, cont.

• Single link with k-cluster stopping criterion satisfies

scale-invariance and consistency

• Single link with distance-r stopping criterion satisfies richness and

consistency

• Sigle link with scale-α stopping criterion satisfies richness and

scale-invariance

Algorithmic Methods of Data Mining, Fall 2005, Chapter 11: Clustering 50

Theorem

For each n ≥ 2 there is no clustering function that satisfies

scale-invariance, richness, and consistency

Proof of theorem

A partition Γ′ is a refinement of partition Γ, if each set C ′ ∈ Γ′ is

included in some set C ∈ Γ
A partial order between partitions: Γ′ ≤ Γ
Antichain of partitions: collection of partitions such than no one is a

refinement of others

Theorem: If a clustering function f satisfies scale-invariance and

concistency, then the range of f is an antichain

Algorithmic Methods of Data Mining, Fall 2005, Chapter 11: Clustering 52

Γ-forcing

• partition Γ

• d (a, b)-conforms to Γ, if for all points i, j in the same cluster of Γ
d(i, j) ≤ a, and for all points i, j in different clusters of Γ
d(i, j) ≥ b

• given a clustering function f

• (a, b) is Γ-forcing, if for all d that (a, b)-conform to Γ we have

f(S, d) = Γ

Forcing, cont.

• Assume f satisfies consistency; let Γ ∈ Range(f)

• Claim: there are a < b such that (a, b) is Γ-forcing

• Γ in range of f : there is d such that f(S, d) = Γ

• a′=minimum distance of points in the same cluster in Γ

• b′=maximum distance of points in different clusters in Γ

• Choose a < b such that a < a′ and b < b′

• If d′ (a, b)-conforms to Γ, then d is a Γ-transformation of d

• By consistency f(d′) = Γ

• Thus (a, b) is Γ-forcing

Algorithmic Methods of Data Mining, Fall 2005, Chapter 11: Clustering 54

Antichains

• Assume f satisfies scale-invariance

• Let Γ0 and Γ1 be possible results of f , and let Γ0 be a refinement

of Γ1

• Show that this leads to contradiction

• (a0, b0) Γ0-forcing, (a1, b1) Γ1-forcing

• Let a2 < a1, choose ε so that 0 < ε < a0a2b
−1
0

• Construct a d such that

– For i, j in same cluster of Γ0 we have d(i, j) ≤ ε

– For i, j in same cluster of Γ1 but not in Γ0 we have

a2 ≤ d(i, j) ≤ a1

– For i, j in different clusters of Γ1 d(i, j) ≥ b1

• d (a, b)-conforms to Γ1, and thus f(S, d) = Γ1

• α = b0a
−1
2 , and let d′ = αd

• scale-invariance: f(d′) = f(d) = Γ1

• i, j in same cluster of Γ0 we have

d′(i, j) ≤ εb0a
−1
2 < a0

• i, j in different clusters of Γ0 we have

d′(i, j) ≥ a2b0a
−1
2 = b0

• d′ (a0, b0) conforms to Γ0, and thus f(S, d′) = Γ0
= Γ1,

contradiction

