Chapter 6: Episode discovery process

Algorithmic Methods of Data Mining, Fall 2005, Chapter 6: Episode discovery process

6. Episode discovery process

- The knowledge discovery process
- KDD process of analyzing alarm sequences
- Discovery and post-processing of large pattern collections
- TASA, Telecommunication Alarm Sequence Analyzer

The knowledge discovery process

Goal: discovery of useful and interesting knowledge

- 1. Understanding the domain
- 2. Collecting and cleaning data
- 3. Discovery of patterns
- 4. Presentation and analysis of results
- 5. Making onclusions and utilizing results

Pattern discovery is only a part of the KDD process (but the central one)

Algorithmic Methods of Data Mining, Fall 2005, Chapter 6: Episode discovery process

3

The knowledge discovery process

Questions implied by the KDD process model:

- How to know what could be interesting?
- How to ensure that correct and reliable discoveries can be made?
- How to discover potentially interesting patterns?
- How to make the results understandable for the user?
- How to use the results?

Algorithmic Methods of Data Mining, Fall 2005, Chapter 6: Episode discovery process

Algorithmic Methods of Data Mining, Fall 2005, Chapter 6: Episode discovery process

File Edit View Go Bookmarks Options Directory Hel	P LINIT	- Materiana: Uncorte	STS-	Tail Tail	-
Attributes Alams Attributes Considered Contered Episodes Help	File Edit View			nectory	2.964
	Antecedent	Consequent	Conf	Frequency	Sig
				0.0000157	1.0
Unordered Episodes	<u>1234_44545</u> <u>1234_44545</u>	1234_66656 1234_11095	0.59	0.0000157	0.9
Produced on Wed Jun 14 19:26:21 1995	1234_44545	6789_44545	1.00	0.0000152	0.1
Data is demo. seq Start: 00:49:44-05.09.94 End: 04:54:12-19.10.94 Alarms: 26796	1234_44545	67.89_445.45 67.89_6665.6	0.59	0.0000282	0.1
2000 C. 00. 40. 44-04. 03. 04. 04: 04: 04: 04: 12-13. 10. 04 ADDINE: 20/36	1234_44545	6789_11095	0.58	0.0000152	0.1
Template: Select Rules	1234_44545	3245_44545	0.72	0.0000132	0.1
Template: Select nulles - Heb	1234_44545	3245_66656	0.35	0.0000094	0
Antecedent predicates: 1234 1	1234_44545	3245_11095	0.34	0.0000089	
Consequent predicates: 44* [11*]	1234_31608	6789_31608	0.77	0.0000367	ο.
Confidence thresholds:	1234_31608	3245_31608	0.69	0.0000330	0.3
(0.1=10%)	1234_66656	1234_44545	0.59	0.0000157	0.1
Frequency thresholds: min 0.00003 max [1234_66656	1234_11095	0.58	0.0000152	0.5
Significance thresholds: min 0.98 max [1234_66656	6789_44545	0.59	0.0000157	ο.
(0.1-10/4)	1234_66656	6789_66656	1.00	0.0000262	ο.
Ordering: Descending Options: Ante Conse Conf. Free. Sien.	1234_66656	6789_11095	0.58	0.0000152	ο.
5 J	1234_66656	3245_44545	0.35	0.0000094	
	1234_66656	3245_66656	0.72	0.0000189	1.
Apply selections: Apply Clear selections : Reset	1234_66656	3245_11095	0.34	0.000089	
	1234_11095	1234_44545	0.96	0.0000152	Ο.
	1234_11095	1234_66656	0.96	0.0000152	Ο.
Rule Generation Parameters	1234_11095	6789_44545	0.96	0.0000152	1.0
Confidence threshold 0	1234_11095	6789_66656	0.96	0.0000152	1.0
730	arias file:/fs/hom	e/group/nfs/g2/seq_a	lama/1224_R		

Algorithmic Methods of Data Mining, Fall 2005, Chapter 6: Episode discovery process

	TASA: Views with templates					
Template:	Select Rules 🗳		Usage Help			
	Antecedent predicates:	ž				
	Consequent predicates:	1234[3245				
	Confidence thresholds: $(0.1=10\%)$	min 0.80	max			
	Frequency thresholds: $(0.1=10\%)$	min	max 0.001			
	Significance thresholds: $\langle 0.1{=}10\%\rangle$	min 0.98	max			
 select/prune rules by their contents ⇒ iteration! 						
 criteria: left-hand/right-hand side of the rule, thresholds 						

Chapter 7: Generalized framework

Algorithmic Methods of Data Mining, Fall 2005, Chapter 7: Generalized framework

7. Generalized framework

- given a set of patterns, a selection criterion, and a database
- find those patterns that satisfy the criterion in the database
- what has to be required from the patterns
- a general levelwise algorithm
- analysis in Chapter 8

- a relation schema R is a set $\{A_1, \ldots, A_m\}$ of attributes.
- each attribute A_i has a *domain* $Dom(A_i)$
- a row over a R is a sequence $\langle a_1, \ldots, a_m \rangle$ such that $a_1 \in Dom(A_i)$ for all $i = 1, \ldots, m$
- the *i*th value of t is denoted by $t[A_i]$
- a relation over ${\cal R}$ is a set of rows over ${\cal R}$
- a *relational database* is a set of relations over a set of relation schema (the *database schema*)

Example

finding all frequent item sets

- a set R a binary database r over R, a frequency threshold min_fr
- $\mathcal{P} = \{X \mid X \subseteq R\},\$
- $q(\varphi,r) = \text{true if and only if } fr(\varphi,r) \geq \min_{r} fr$

Algorithmic Methods of Data Mining, Fall 2005, Chapter 7: Generalized framework

Methodological point

- find all patterns that are selected by a relatively simple criterion—such as exceeding a frequency threshold—in order to efficiently identify a space of potentially interesting patterns
- other criteria can then be used for further pruning and processing of the patterns
- e.g., association rules or episode rules

Algorithmic Methods of Data Mining, Fall 2005, Chapter 7: Generalized framework

Generic levelwise algorithm

- the *level* of a pattern φ in P, denoted *level*(φ), is 1 if there is no θ in P for which θ ≺ φ.
- otherwise $level(\varphi)$ is 1 + L, where L is the maximum level of patterns θ in \mathcal{P} for which $\theta \prec \varphi$
- the collection of frequent patterns of level l is denoted by $\mathcal{T}_l(\mathcal{P}, \mathbf{r}, q) = \{ \varphi \in \mathcal{T}(\mathcal{P}, \mathbf{r}, q) \mid \textit{level}(\varphi) = l \}.$

Algorithmic Methods of Data Mining, Fall 2005, Chapter 7: Generalized framework

20

Algorithm 7.6

Input: A database schema \mathbf{R} , a database \mathbf{r} over \mathbf{R} , a finite set \mathcal{P} of patterns, a computable selection criterion q over \mathcal{P} , and a computable specialization relation \preceq on \mathcal{P} .

Output: The set $\mathcal{T}(\mathcal{P}, \mathbf{r}, q)$ of all frequent patterns.

Method:

- 1. compute $C_1 := \{ \varphi \in \mathcal{P} \mid \textit{level}(\varphi) = 1 \};$
- 2. l := 1;
- 3. while $C_l \neq \emptyset$ do
- 4. // Database pass:
- 5. compute $\mathcal{T}_l(\mathcal{P}, \mathbf{r}, q) := \{ \varphi \in \mathcal{C}_l \mid q(\varphi, \mathbf{r}) \};$
- 6. l := l + 1;
- 7. // Candidate generation:
- 8. compute $C_l := \{ \varphi \in \mathcal{P} \mid \textit{level}(\varphi) = l \text{ and } \theta \in \mathcal{T}_{\textit{level}(\theta)}(\mathcal{P}, \mathbf{r}, q) \text{ for all} \\ \theta \in \mathcal{P} \text{ such that } \theta \prec \varphi \};$
- 9. for all l do output $\mathcal{T}_l(\mathcal{P}, \mathbf{r}, q)$;

Algorithmic Methods of Data Mining, Fall 2005, Chapter 7: Generalized framework

Chapter 8: Complexity of finding frequent patterns

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns23

8. Complexity of finding frequent patterns

- border of a theory
- time usage
- guess-and-correct algorithm
- analysis
- borders and hypergraph transversals

The border of a theory

- $\mathcal{T}(\mathcal{P},\mathbf{r},q)$ of \mathcal{P}
- the whole theory can be specified by giving only the maximally specific patterns in $\mathcal{T}(\mathcal{P},\mathbf{r},q)$
- collection of maximally specific patterns in $\mathcal{T}(\mathcal{P},\mathbf{r},q)$

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns25

Definition of border
collection of minimally specific (i.e., maximally general) patterns not in T(P, r, q)
P be a set of patterns, S a subset of P, ≤ a partial order on P
S closed downwards under the relation ≤: if φ ∈ S and γ ≤ φ, then γ ∈ S
border Bd(S) of S consists of those patterns φ such that all more general patterns than φ are in S and no pattern more specific than φ is in S:
Bd(S) = {φ ∈ P | for all γ ∈ P such that γ ≺ φ we have γ ∈ S, and for all θ ∈ P such that φ ≺ θ we have θ ∉ S}.

• positive border $\mathcal{B}d^+(\mathcal{S})$

 $\mathcal{B}d^+(\mathcal{S})=\{\varphi\in\mathcal{S}\,\big|\,\text{for all }\theta\in\mathcal{P}\text{ such that }\varphi\prec\theta\text{ we have }\theta\not\in\mathcal{S}\},$

• the negative border $\mathcal{B}d^{-}(\mathcal{S})$

$$\mathcal{B}d^{-}(\mathcal{S}) = \{ \varphi \in \mathcal{P} \setminus \mathcal{S} | \text{for all } \gamma \in \mathcal{P} \text{ such that } \gamma \prec \varphi \text{ we have } \gamma \in \mathcal{S} \}$$

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns27

Example for frequent sets

• $R = \{A, \ldots, F\}$

 $\{\{A\}, \{B\}, \{C\}, \{F\}, \{A, B\}, \{A, C\}, \{A, F\}, \{C, F\}, \{A, C, F\}\}.$

• the negative border is thus

 $\mathcal{B}d^{-}(\mathcal{F}) = \{\{D\}, \{E\}, \{B, C\}, \{B, F\}\}$

• the positive border, in turn, contains the maximal frequent sets, i.e.,

 $\mathcal{B}d^+(\mathcal{F}) = \{\{A, B\}, \{A, C, F\}\}$

• frequent episodes in a sequence over events A, \ldots, D

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns29

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns31

Generic algorithm, again

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns33

Algorithm 7.6

Input: A database schema \mathbf{R} , a database \mathbf{r} over \mathbf{R} , a finite set \mathcal{P} of patterns, a computable selection criterion q over \mathcal{P} , and a computable specialization relation \preceq on \mathcal{P} .

Output: The set $\mathcal{T}(\mathcal{P}, \mathbf{r}, q)$ of all frequent patterns..

 $\begin{array}{ll} \textbf{Method:} \\ 1. \quad \text{compute } \mathcal{C}_1 := \{ \varphi \in \mathcal{P} \ \big| \ \textit{level}(\varphi) = 1 \} \ ; \end{array}$ 2. l := 1;while $C_l \neq \emptyset$ do 3. // Database pass: 4. compute $\mathcal{T}_l(\mathcal{P},\mathbf{r},q):=\{arphi\in\mathcal{C}_l\mid q(arphi,\mathbf{r})\}$; 5. 6. l := l + 1;7. // Candidate generation: $\text{compute } \mathcal{C}_l := \{ \varphi \in \mathcal{P} \mid \textit{level}(\varphi) = l \text{ and } \theta \in \mathcal{T}_{\textit{level}(\theta)}(\mathcal{P}, \mathbf{r}, q) \text{ for all }$ 8. $\theta \in \mathcal{P}$ such that $\theta \prec \varphi$ }; for all l do output $\mathcal{T}_l(\mathcal{P}, \mathbf{r}, q)$ 9.

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns35

Corollary 8.5 Given a set R, a binary database r over R, and a frequency threshold min_{fr} , Algorithm 2.14 evaluates the frequency of sets in $\mathcal{F}(r, min_{fr}) \cup \mathcal{B}d^{-}(\mathcal{F}(r, min_{fr}))$.

candidate generation: computes the negative border

p	<i>min_fr</i>	$ \mathcal{T}(\mathcal{P},\mathbf{r},q) $	$ \mathcal{B}d^+(\mathcal{T}(\mathcal{P},\mathbf{r},q)) $	$ \mathcal{B}d^-(\mathcal{T}(\mathcal{P},\mathbf{r},q)) $
0.2	0.01	469	273	938
0.2	0.005	1291	834	3027
0.5	0.1	1335	1125	4627
0.5	0.05	5782	4432	11531

Table 8.1: Experimental results with random data sets.

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns37

<i>min_fr</i>	$ \mathcal{T}(\mathcal{P},\mathbf{r},q) $	$ \mathcal{B}d^+(\mathcal{T}(\mathcal{P},\mathbf{r},q)) $	$ \mathcal{B}d^-(\mathcal{T}(\mathcal{P},\mathbf{r},q)) $
0.08	96	35	201
0.06	270	61	271
0.04	1028	154	426
0.02	6875	328	759

Table 8.2: Experimental results with a real data set.

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns39

The guess-and-correct algorithm for finding all potentially interesting sentences with an initial guess S.

Input: A database \mathbf{r} , a language \mathcal{P} with specialization relation \leq , a selection predicate q, and an initial guess $\mathcal{S} \subseteq \mathcal{P}$ for $\mathcal{T}(\mathcal{P}, \mathbf{r}, q)$. We assume \mathcal{S} is closed under generalizations.

Output: The set $\mathcal{T}(\mathcal{P}, \mathbf{r}, q)$.

Algorithm 8.7 $\begin{array}{ll} \mathbf{Method:}\\ \mathbf{1.} \quad \mathcal{C}^* := \emptyset; \end{array}$ // correct ${\cal S}$ downward: $\mathcal{C} := \mathcal{B}d^+(\mathcal{S});$ 2. 3. while $\mathcal{C} \neq \emptyset$ do 4. $\mathcal{C}^* := \mathcal{C}^* \cup \mathcal{C};$ $\mathcal{S} := \mathcal{S} \setminus \{ \varphi \in \mathcal{C} \mid q(\mathbf{r}, \varphi) \text{ is false} \};$ 5. $\mathcal{C} := \mathcal{B}d^+(\mathcal{S}) \setminus \mathcal{C}^*;$ 6. 7. od; // now $S \subseteq T(\mathcal{P}, \mathbf{r}, q)$; expand S upwards: 8. $\mathcal{C} := \mathcal{B}d^{-}(\mathcal{S}) \setminus \mathcal{C}^*;$ while $\mathcal{C} \neq \emptyset$ do 9. $\mathcal{C}^* := \mathcal{C}^* \cup \mathcal{C};$ 10. $\mathcal{S} := \mathcal{S} \cup \{ \varphi \in \mathcal{C} \mid q(\mathbf{r}, \varphi) \text{ is true} \};$ 11. $\mathcal{C} := \mathcal{B}d^{-}(\mathcal{S}) \setminus \mathcal{C}^*;$ 12. 13. od; 14. output S;

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns41

Lemma 8.8 Algorithm 8.7 works correctly.

Theorem 8.9 Algorithm 8.7 uses at most

$$|(\mathcal{S} \triangle \mathcal{T}) \cup \mathcal{B}d(\mathcal{T}) \cup \mathcal{B}d^+(\mathcal{S} \cap \mathcal{T})|$$

evaluations of q, where $\mathcal{T} = \mathcal{T}(\mathcal{P}, \mathbf{r}, q)$.

- sampling
- $\bullet\,$ Take a small sample ${\bf s}$ from ${\bf r}$
- compute $\mathcal{T}(\mathcal{P},\mathbf{r},q)$ and use it as \mathcal{S}
- Applied to association rules this method produces extremely good results
- with a high probability one can discover the association rules holding in a database using only a single pass through the database
- other method: partitioning the database

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns43

Complexity analysis

Verification problem: assume somebody gives a set $S \subseteq P$ and claims that $S = T(P, \mathbf{r}, q)$. How many evaluations of q are necessary for verifying this claim?

Theorem 8.10 Let \mathcal{P} and $\mathcal{S} \subseteq \mathcal{P}$ be sets of patterns, \mathbf{r} a database, q a selection criterion, and \leq a specialization relation. If the database \mathbf{r} is accessed only using the predicate q, then determining whether $\mathcal{S} = \mathcal{T}(\mathcal{P}, \mathbf{r}, q)$ (1) requires in the worst case at least $|\mathcal{B}d(\mathcal{S})|$ evaluations of q, and (2) can be done in exactly $|\mathcal{B}d(\mathcal{S})|$ evaluations of q.

Corollary 8.11 Let \mathcal{P} be a set of patterns, \mathbf{r} a database, q a selection criterion, and \leq a specialization relation. Any algorithm that computes $\mathcal{T}(\mathcal{P}, \mathbf{r}, q)$ and accesses the data only with the predicate q must evaluate q on the patterns in $\mathcal{B}d(\mathcal{T}(\mathcal{P}, \mathbf{r}, q))$.

$$\begin{split} R &= \{A, \dots, F\} \\ \text{claim: frequent sets are} \\ \mathcal{S} &= \{\{A\}, \{B\}, \{C\}, \{F\}, \{A, B\}, \{A, C\}, \{A, F\}, \{C, F\}, \{A, C, F\}\}. \\ \text{verify this:} \\ \mathcal{B}d^+(\mathcal{S}) &= \{\{A, B\}, \{A, C, F\}\} \text{ and} \\ \mathcal{B}d^-(\mathcal{S}) &= \{\{D\}, \{E\}, \{B, C\}, \{B, F\}\} \end{split}$$

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns45

- a simple hypergraph \mathcal{H} on a set R, a *transversal* T of \mathcal{H} is a subset of R intersecting all the edges of \mathcal{H}
- T is a transversal if and only if $T \cap X \neq \emptyset$ for all $X \in \mathcal{H}$
- minimal transversal of ${\mathcal H}$ is a transversal T such that no $T' \subset T$ is a transversal
- $Tr(\mathcal{H})$

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns47

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns49

Chapter 9: Sampling

Algorithmic Methods of Data Mining, Fall 2005, Chapter 9: Sampling

9. Sampling in knowledge discovery

- why sampling?
- what types of knowledge can be discovered using sampling?
- basic techniques of sampling (from files)
- sampling in finding association rules

Why sampling?

- lots of data
- many algorithms are worse that linear
- hunting for relatively common phenomena
- solution: take a sample from the data, and analyze it
- if necessary, confirm the findings by looking at the whole data set

Algorithmic Methods of Data Mining, Fall 2005, Chapter 9: Sampling

What types of knowledge?

- estimating the sizes of certain subgroups
- opinion polls: about 1000 persons gives an accuracy of around 2 % points
- (the size of the population does not have an influence)
- what about very rare phenomena?
- "there exists a subgroup of 100 objects having these and these properties"
- very difficult to verify using sampling, if the population is large

Algorithmic Methods of Data Mining, Fall 2005, Chapter 9: Sampling

Sampling without replacement, basic method

- keep a bit vector of N bits
- generate random integers b between 1 and N and mark bit b, if it is not already marked
- $\bullet\,$ until K bits have been marked
- read through the bit vector and the data file, and output the selected records

Sampling without replacement, sequential method

```
\begin{split} T &:= K; \\ M &:= N; \\ i &:= 1; \\ \textbf{while } T > 0 \textbf{ do} \\ & \text{let } b \text{ be a random number from } [0, 1]; \\ \textbf{if } b &< T/M \textbf{ then} \\ & \text{output record } t_i; \\ T &:= T - 1; \\ M &:= M - 1; \\ \textbf{else} \\ & M &:= M - 1; \\ \textbf{end;} \\ \textbf{end;} \end{split}
```

Algorithmic Methods of Data Mining, Fall 2005, Chapter 9: Sampling

Correctness

- by induction on N; for N = 0 and N = 1, the correctness is clear
- assume the algorithm works for ${\cal N}={\cal N}';$ we show that it works for ${\cal N}={\cal N}'+1$
- the first element of the file will be selected with probability K/N, as required
- what about the next elements? two cases: the first element was selected or it wasn't
- probability that an element will be selected is

$$\frac{K}{N}\frac{K-1}{N-1} + \frac{N-K}{N}\frac{K}{N-1} = \frac{K}{N}$$

Sampling for association rules

- Current algorithms require several database passes
- For very large databases, the I/O overhead is significant
- Random sample can give accurate results in sublinear time
- Random samples can be used to boost the discovery of exact association rules (a variant of guess-and-correct algorithm)
- Result: 1 database pass, in the worst case 2 passes

Algorithmic Methods of Data Mining, Fall 2005, Chapter 9: Sampling

Simple random sample

58

Use a random sample only

- Frequent sets can be found in main memory
 ⇒ very efficient!
- Good news: approximations for frequencies and confidences are good
- Bad news: applications may require exact rules

Algorithm: first pass

Goal: Exact rules in (almost) one pass

- 1. Pick a random sample s from r
- 2. Select a lowered threshold $low_fr < min_fr$
- 3. Compute $S = \mathcal{F}(s, \textit{low}_fr)$ in main memory Goal: $S \supseteq \mathcal{F}(r, \textit{min}_fr)$
- 4. Compute the exact frequencies of sets in $\ensuremath{\mathcal{S}}$ using the rest of the database

Algorithmic Methods of Data Mining, Fall 2005, Chapter 9: Sampling

Negative border

- Recall: the border (both positive and negative) has to be evaluated to verify the result
- Assume $\mathcal{S} = \mathcal{F}(s, \textit{low_fr})$ has been computed from a sample s
- If any set not in ${\mathcal S}$ is actually frequent in r, then a set in ${\mathcal B}d^-({\mathcal S})$ must be frequent

Algorithmic Methods of Data Mining, Fall 2005, Chapter 9: Sampling

Negative border

62

- After sampling and computing S, verify both S and $\mathcal{B}d^-(S)$ in the rest of the database (and obtain the exact frequencies)
- If no set in $\mathcal{B}d^-(\mathcal{S})$ is frequent, then \mathcal{S} is guaranteed to contain all frequent sets
- If a set X in $\mathcal{B}d^-(\mathcal{S})$ is frequent, then a frequent superset of X might be missed

 \Rightarrow Second pass over the database can be necessary, if there are frequent sets in $\mathcal{B}d^-(\mathcal{S})$

Algorithmic Methods of Data Mining, Fall 2005, Chapter 9: Sampling

Sampling as an instance of guess-and-correct

- $\bullet\,$ Use a random sample to obtain a guess ${\cal S}$
 - Goal: $\mathcal{S} \supset \mathcal{F}(r, \min_{r} fr)$
 - 1st pass: correction in one direction only (removal of infrequent sets)
- Negative border $\mathcal{B}d^-(\mathcal{S})$ tells whether frequent sets were missed
 - $-\,$ If necessary, add all possibly frequent sets to ${\cal S}$
 - Now $\mathcal{S} \supset \mathcal{F}(r, \textit{min}_fr)$ is guaranteed
 - 2nd pass: evaluate ${\cal S}$

Dynamic threshold

- Second pass over the database is necessary, if there are frequent sets in Bd⁻(S)
- → Frequencies of border sets can be used to estimate the probability of a second pass
- Idea: set the lowered threshold in run time, so that the probability of a second pass is within a desired range

Algorithmic Methods of Data Mining, Fall 2005, Chapter 9: Sampling

66

Chernoff bounds

Theorem 9.8 Given an item set X and a random sample s of size

$$|s| \ge \frac{1}{2\varepsilon^2} \ln \frac{2}{\delta}$$

the probability that $|fr(X,s) - fr(X)| > \varepsilon$ is at most δ .

Proof The Chernoff bounds give the result $Pr[|x - np| > a] < 2e^{-2a^2/n}$, where x is a random variable with binomial distribution B(n, p). For the probability at hand we thus have

$$Pr[|fr(X,s) - fr(X)| > \varepsilon]$$

= $Pr[|fr(X,s) - fr(X)| \cdot |s| > \varepsilon |s|]$
 $\leq 2e^{-2(\varepsilon |s|)^2/|s|} \leq \delta.$

What does this mean?

ε	δ	Sample size
0.01	0.01	27 000
0.01	0.001	38 000
0.01	0.0001	50 000
0.001	0.01	2 700 000
0.001	0.001	3 800 000
0.001	0.0001	5 000 000

Sufficient sample sizes (note: Chernoff bounds are rough!)

Table 9.1 Sufficient sample sizes, given ε and δ .

Algorithmic Methods of Data Mining, Fall 2005, Chapter 9: Sampling

Corollary 9.9 Given a collection S of sets and a random sample s of size

What about several sets?

$$|s| \ge \frac{1}{2\varepsilon^2} \ln \frac{2|\mathcal{S}|}{\Delta},$$

the probability that there is a set $X \in S$ such that $|fr(X,s) - fr(X)| > \varepsilon$ is at most Δ .

Proof By Theorem 9.8, the probability that $|fr(X,s) - fr(X)| > \varepsilon$ for a given set X is at most $\frac{\Delta}{|S|}$. Since there are |S| such sets, the probability in question is at most Δ .

Algorithmic Methods of Data Mining, Fall 2005, Chapter 9: Sampling

Results

Lowered frequency threshold

	Sample size $ s $			
min_fr (%)	20,000	40,000	60,000	80,000
0.25	0.13	0.17	0.18	0.19
0.50	0.34	0.38	0.40	0.41
0.75	0.55	0.61	0.63	0.65
1.00	0.77	0.83	0.86	0.88
1.50	1.22	1.30	1.33	1.35
2.00	1.67	1.77	1.81	1.84
able 9.3 Low	vered frequ	uency thre	esholds fo	$\delta = 0.00$

Algorithmic Methods of Data Mining, Fall 2005, Chapter 9: Sampling

72

Results

min₋fr	20,000	40,000	60,000	80,000	Level-wise
0.50	382,282	368,057	359,473	356,527	318,588
0.75	290,311	259,015	248,594	237,595	188,024
1.00	181,031	158,189	146,228	139,006	97,613
1.50	52,369	40,512	36,679	34,200	20,701
2.00	10,903	7,098	5,904	5,135	3,211

 $\mathbf{Table} ~ \mathbf{9.5} ~ \mathsf{Number} ~ \mathsf{of} ~ \mathsf{itemsets} ~ \mathsf{considered} ~ \mathsf{for} ~ \mathsf{data} ~ \mathsf{set} ~ \mathsf{T10.I4.D100K}$

Exact I/O savings?
Depends on storage structures and sampling methods
Example 1: Database size 10 million rows, sample size 20 thousand rows, 100 rows/disk block ⇒ sampling reads at most 20 % of the database
Example 2: database size 10 billion rows ⇒ sampling reads at most 0.02 % of the database