
Chapter 5: Minimal occurrences of
episodes

Algorithmic Methods of Data Mining, Fall 2005, Chapter 5: Minimal occurrences of episodes 1

5. Minimal occurrences of episodes

• an alternative approach to discovery of episodes

• no windows

• for each potentially interesting episode, find out the exact

occurrences of the episode

• advantages: easy to modify time limits, several time limits for one

rule (“if A and B occur within 15 seconds, then C follows within

30 seconds”)

• disadvantages: uses lots of space

Definitions

• an episode α and an event sequence s

• interval [ts, te) is a minimal occurrence of α in s, if

– α occurs in the window w = (w, ts, te) on s

– α does not occur in any proper subwindow on w

• set of (intervals of) minimal occurrences of an episode α:

mo(α) = { [ts, te) [ts, te) is a minimal occurrence of α}.

Algorithmic Methods of Data Mining, Fall 2005, Chapter 5: Minimal occurrences of episodes 3

Example

E F

α

A

B

β

A

B

C

γ

Figure 1: Episodes.

30 35 40 45 50 55 60 65

E D F A B C E F C D B A D C E F C B E A E C F A D

Figure 2: The example event sequence s.

β consisting of event types A and B has four minimal occurrences

in s: mo(β) = {[35, 38), [46, 48), [47, 58), [57, 60)}.

The partially ordered episode γ has the following three minimal

occurrences: [35, 39), [46, 51), [57, 62).

Algorithmic Methods of Data Mining, Fall 2005, Chapter 5: Minimal occurrences of episodes 5

Episodes rules, new version

• episode rule: β [win1] ⇒ α [win2],

• β and α are episodes such that β � α

• win1 and win2 are integers

• if episode β has a minimal occurrence at interval [ts, te) with

te − ts ≤ win1, then episode α occurs at interval [ts, t
′
e) for some

t′e such that t′e − ts ≤ win2

• formally: mowin1
(β) = {[ts, te) ∈ mo(β) te − ts ≤ win1}

• given α and an interval [us, ue), define occ(α, [us, ue)) = true if

and only if there exists a minimal occurrence [u′
s, u

′
e) ∈ mo(α)

such that us ≤ u′
s and u′

e ≤ ue

• The confidence of an episode rule β [win1] ⇒ α [win2] is now

|{[ts, te) ∈ mowin1
(β) occ(α, [ts, ts + win2))}|

|mowin1
(β)|

.

Algorithmic Methods of Data Mining, Fall 2005, Chapter 5: Minimal occurrences of episodes 7

Example, cont.

• β [3] ⇒ γ [4]

• three minimal occurrences [35, 38), [46, 48), [57, 60) of β of width

at most 3 in the denominator

• Only [35, 38), has an occurrence of α within width 4, so the

confidence is 1/3.

• rule β [3] ⇒ γ [5] the confidence is 1.

Rule forms

• temporal relationships can be complex

Algorithmic Methods of Data Mining, Fall 2005, Chapter 5: Minimal occurrences of episodes 9

Frequency and support

• previously: frequency = fraction of windows containing the episode

• no fixed window size

• several minimal occurrences within a window

• support of an episode: the number of minimal occurrences of an

episode, |mo(α)|

Rule discovery task

• an event sequence s

• a class E of episodes

• a set W of time bounds

• find all frequent episode rules of the form β [win1] ⇒ α [win2]

• β, α ∈ E and win1,win2 ∈ W.

Algorithmic Methods of Data Mining, Fall 2005, Chapter 6: Episode discovery process2

Chapter 6: Episode discovery process

6. Episode discovery process

• The knowledge discovery process

• KDD process of analyzing alarm sequences

• Discovery and post-processing of large pattern collections

• TASA, Telecommunication Alarm Sequence Analyzer

Algorithmic Methods of Data Mining, Fall 2005, Chapter 6: Episode discovery process 12

The knowledge discovery process

Goal: discovery of useful and interesting knowledge

1. Understanding the domain

2. Collecting and cleaning data

3. Discovery of patterns

4. Presentation and analysis of results

5. Making onclusions and utilizing results

Pattern discovery is only a part of the KDD process (but the central

one)

The knowledge discovery process

Questions implied by the KDD process model:

• How to know what could be interesting?

• How to ensure that correct and reliable discoveries can be made?

• How to discover potentially interesting patterns?

• How to make the results understandable for the user?

• How to use the results?

Algorithmic Methods of Data Mining, Fall 2005, Chapter 6: Episode discovery process 14

Episode discovery process for alarm sequences

Collecting and cleaning the data

• Can take a lot of time

• Collection of alarms rather easy

• Data cleaning? Inaccuracy of clocks

• Missing data?

• What are the event types?

– Alarm type? Network element? A combination of the two?

• How to deal with background knowledge: network topology,

object hierarchies for network elements

• “Alarm predicates”: properties of alarms

Discovery of patterns

Strategy:

1. Find all potentially interesting patterns

⇒ lots of rules

2. Allow users to explore the patterns iteratively and interactively

1. All potentially interesting patterns

– Episodes: combination of alarms

– Association rules: what are alarms like

– Frequency and confidence thresholds

– Background knowledge coded into alarm predicates in various

alternative ways

– Network topology used to constrain patterns

Algorithmic Methods of Data Mining, Fall 2005, Chapter 6: Episode discovery process 16

Presentation and analysis of results

There can be lots of rules

• only a small part is really interesting

• – subjective

– hard to define in advance

– can depend on the case

• also expected regularities (or their absence) can be of interest

⇒ iteration is necessary

⇒ support for personal views is needed

Alarm1
Alarm1

Alarm2
Alarm2

Alarm3

Alarm2
Alarm3

Alarm4
Alarm5

Alarm8

Pruning

Ordering

Structuring

4531 rules 5 rules

Pruning and ordering:

• alarm predicates on the left or right side

• confidence, frequency, statistical significance

Structuring:

• clusters, hierarchies, etc.

Algorithmic Methods of Data Mining, Fall 2005, Chapter 6: Episode discovery process 18

TASA: A KDD tool for alarm analysis

• pages are created automatically from analysis results

TASA: Giving an overview of data

Distances between occurrences of alarm 1234_5678

0 - 300 s

0 50 100 150 200 250 300

0
5

1
0

1
5

2
0

0 - 10 min, bar = 1 s, Total count = 138

300 - 600 s

300 350 400 450 500 550 600

0
5

1
0

1
5

2
0

statistical information, histograms

Algorithmic Methods of Data Mining, Fall 2005, Chapter 6: Episode discovery process 20

TASA: Rule presentation

episode and association rules, views, histograms

TASA: Views with templates

• select/prune rules by their contents

⇒ iteration!

• criteria: left-hand/right-hand side of the rule, thresholds

Algorithmic Methods of Data Mining, Fall 2005, Chapter 7: Generalized framework3

Chapter 7: Generalized framework

7. Generalized framework

• given a set of patterns, a selection criterion, and a database

• find those patterns that satisfy the criterion in the database

• what has to be required from the patterns

• a general levelwise algorithm

• analysis in Chapter 8

Algorithmic Methods of Data Mining, Fall 2005, Chapter 7: Generalized framework 23

Relational databases

• a relation schema R is a set {A1, . . . , Am} of attributes.

• each attribute Ai has a domain Dom(Ai)

• a row over a R is a sequence 〈a1, . . . , am〉 such that

a1 ∈ Dom(Ai) for all i = 1, . . . ,m

• the ith value of t is denoted by t[Ai]

• a relation over R is a set of rows over R

• a relational database is a set of relations over a set of relation

schema (the database schema)

Discovery task

• P is a set of patterns

• q is a selection criterion, i.e., a predicate

q : P × {r r is a database} → {true, false}.

• ϕ is selected if q(ϕ, r) is true

• frequent as a synonym for “selected”.

• give a database r, the theory T (P, r, q) of r with respect to P

and q is T (P, r, q) = {ϕ ∈ P q(ϕ, r) is true}.

Algorithmic Methods of Data Mining, Fall 2005, Chapter 7: Generalized framework 25

Example

finding all frequent item sets

• a set R a binary database r over R, a frequency threshold min fr

• P = {X X ⊆ R},

• q(ϕ, r) = true if and only if fr(ϕ, r) ≥ min fr

Selection predicate

• no semantics given for the patterns

• selection criterion takes care of that

• “q(ϕ, r) is true” can mean different things:

• ϕ occurs often enough in r

• ϕ is true or almost true in r

• ϕ defines, in some way, an interesting property or subgroup of r

• determining the theory of r is not tractable for arbitrary sets P

and predicates q

Algorithmic Methods of Data Mining, Fall 2005, Chapter 7: Generalized framework 27

Methodological point

• find all patterns that are selected by a relatively simple

criterion—such as exceeding a frequency threshold—in order to

efficiently identify a space of potentially interesting patterns

• other criteria can then be used for further pruning and processing

of the patterns

• e.g., association rules or episode rules

Specialization relation

• P be a set of patterns, q a selection criterion over P

• � a partial order on the patterns in P

• if for all databases r and patterns ϕ, θ ∈ P we have that q(ϕ, r)

and θ � ϕ imply q(θ, r),

• then � is a specialization relation on P with respect to q

• θ � ϕ, then ϕ is said to be more special than θ and θ to be more

general than ϕ

• θ ≺ ϕ: θ � ϕ and not ϕ � θ

• the set inclusion relation ⊆ is a specialization relation for frequent

sets

Algorithmic Methods of Data Mining, Fall 2005, Chapter 7: Generalized framework 29

Generic levelwise algorithm

• the level of a pattern ϕ in P, denoted level(ϕ), is 1 if there is no θ

in P for which θ ≺ ϕ.

• otherwise level(ϕ) is 1 + L, where L is the maximum level of

patterns θ in P for which θ ≺ ϕ

• the collection of frequent patterns of level l is denoted by

Tl(P, r, q) = {ϕ ∈ T (P, r, q) level(ϕ) = l}.

Algorithm 7.6

Input: A database schema R, a database r over R, a finite set P of

patterns, a computable selection criterion q over P, and a computable

specialization relation � on P.

Output: The set T (P, r, q) of all frequent patterns.

Method:
1. compute C1 := {ϕ ∈ P level(ϕ) = 1};
2. l := 1;
3. while Cl 6= ∅ do

4. // Database pass:
5. compute Tl(P, r, q) := {ϕ ∈ Cl q(ϕ, r)};
6. l := l + 1;
7. // Candidate generation:
8. compute Cl := {ϕ ∈ P level(ϕ) = l and θ ∈ Tlevel(θ)(P, r, q) for all

θ ∈ P such that θ ≺ ϕ};
9. for all l do output Tl(P, r, q);

Algorithmic Methods of Data Mining, Fall 2005, Chapter 7: Generalized framework 31

Theorem 7.7 Algorithm 7.6 works correctly.

Examples

• association rules

• episodes: specialization relation

• exact database rules

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns4

Chapter 8: Complexity of finding
frequent patterns

8. Complexity of finding frequent patterns

• border of a theory

• time usage

• guess-and-correct algorithm

• analysis

• borders and hypergraph transversals

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns34

The border of a theory

• T (P, r, q) of P

• t whole theory can be specified by giving only the maximally

specific patterns in T (P, r, q)

• collection of maximally specific patterns in T (P, r, q)

Definition

• collection of minimally specific (i.e., maximally general) patterns

not in T (P, r, q)

• P be a set of patterns, S a subset of P, � a partial order on P

• S closed downwards under the relation �: if ϕ ∈ S and γ � ϕ,

then γ ∈ S

• border Bd(S) of S consists of those patterns ϕ such that all more

general patterns than ϕ are in S and no pattern more specific

than ϕ is in S:

Bd(S) = {ϕ ∈ P for all γ ∈ P such that γ ≺ ϕ we have γ ∈ S,

and for all θ ∈ P such that ϕ ≺ θ we have θ 6∈ S}.

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns36

• positive border Bd+(S)

Bd+(S) = {ϕ ∈ S for all θ ∈ P such that ϕ ≺ θ we have θ 6∈ S},

• the negative border Bd−(S)

Bd−(S) = {ϕ ∈ P\S for all γ ∈ P such that γ ≺ ϕ we have γ ∈ S}.

Example

• R = {A, . . . , F}

{{A}, {B}, {C}, {F}, {A,B}, {A,C}, {A,F}, {C,F}, {A,C, F}}.

• the negative border is thus

Bd−(F) = {{D}, {E}, {B,C}, {B,F}}

• the positive border, in turn, contains the maximal frequent sets,

i.e.,

Bd+(F) = {{A,B}, {A,C, F}}

• frequent episodes in a sequence over events A, . . . ,D

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns38

A B D
A

B

A

D

B

D

A

B

D

A B B A A D D B

A B

D

A D

B

D B

A
A D B

Figure 8.1: A collection F(s, win, min fr) of frequent episodes.

B A A D B

Figure 8.2: The positive border Bd+(F(s, win, min fr)).

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns40

C D A B D

B A

D

Figure 8.3: The negative border Bd−(F(s, win, min fr)).

Complexity of the generic algorithm

Theorem 8.4 Let P, r, and q be as in Algorithm 7.6. Algorithm 7.6

evaluates the predicate q exactly on the patterns in

T (P, r, q) ∪ Bd−(T (P, r, q)).

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns42

Corollary 8.5 Given a set R, a binary database r over R, and a

frequency threshold min fr, Algorithm 2.14 evaluates the frequency of

sets in F(r,min fr) ∪ Bd−(F(r,min fr)).

candidate generation: computes the negative border

p min fr |T (P, r, q)| |Bd+(T (P, r, q))| |Bd−(T (P, r, q))|

0.2 0.01 469 273 938

0.2 0.005 1291 834 3027

0.5 0.1 1335 1125 4627

0.5 0.05 5782 4432 11531

Table 8.1: Experimental results with random data sets.

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns44

min fr |T (P, r, q)| |Bd+(T (P, r, q))| |Bd−(T (P, r, q))|

0.08 96 35 201

0.06 270 61 271

0.04 1028 154 426

0.02 6875 328 759

Table 8.2: Experimental results with a real data set.

The guess-and-correct algorithm

• levelwise search: safe but sometimes slow

• if there are frequent patterns that are far from the bottom of the

specialization relation

• an alternative: start finding T (P, r, q) from an initial guess

S ⊆ P, and then correcting the guess by looking at the database

• if the initial guess is good, few iterations are needed to correct the

result

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns46

Algorithm 8.7

The guess-and-correct algorithm for finding all potentially interesting

sentences with an initial guess S.

Input: A database r, a language P with specialization relation �, a

selection predicate q, and an initial guess S ⊆ P for T (P, r, q). We

assume S is closed under generalizations.

Output: The set T (P, r, q).

Algorithm 8.7

Method:
1. C∗ := ∅;

// correct S downward:

2. C := Bd+(S);

3. while C 6= ∅ do

4. C∗ := C∗ ∪ C;

5. S := S \ {ϕ ∈ C q(r, ϕ) is false};

6. C := Bd+(S) \ C∗;

7. od;

// now S ⊆ T (P, r, q); expand S upwards:

8. C := Bd−(S) \ C∗;

9. while C 6= ∅ do

10. C∗ := C∗ ∪ C;

11. S := S ∪ {ϕ ∈ C q(r, ϕ) is true};

12. C := Bd−(S) \ C∗;

13. od;

14. output S;

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns48

Lemma 8.8 Algorithm 8.7 works correctly.

Theorem 8.9 Algorithm 8.7 uses at most

|(S△T) ∪ Bd(T) ∪ Bd+(S ∩ T)|

evaluations of q, where T = T (P, r, q).

Initial guesses?

• sampling

• Take a small sample s from r

• compute T (P, r, q) and use it as S

• Applied to association rules this method produces extremely good

results

• with a high probability one can discover the association rules

holding in a database using only a single pass through the

database

• other method: partitioning the database

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns50

Complexity analysis

Verification problem: assume somebody gives a set S ⊆ P and claims

that S = T (P, r, q). How many evaluations of q are necessary for

verifying this claim?

Theorem 8.10 Let P and S ⊆ P be sets of patterns, r a database, q

a selection criterion, and � a specialization relation. If the database r

is accessed only using the predicate q, then determining whether

S = T (P, r, q) (1) requires in the worst case at least |Bd(S)|

evaluations of q, and (2) can be done in exactly |Bd(S)| evaluations

of q.

Corollary 8.11 Let P be a set of patterns, r a database, q a

selection criterion, and � a specialization relation. Any algorithm that

computes T (P, r, q) and accesses the data only with the predicate q

must evaluate q on the patterns in Bd(T (P, r, q)).

R = {A, . . . , F}

claim: frequent sets are

S = {{A}, {B}, {C}, {F}, {A,B}, {A,C}, {A,F}, {C,F}, {A,C, F}}.

verify this:

Bd+(S) = {{A,B}, {A,C, F}} and

Bd−(S) = {{D}, {E}, {B,C}, {B,F}}

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns52

Computing the border

• S, we can compute Bd+(S) without looking at the data r

• the negative border Bd−(S) is also defined by S

• finding the most general patterns in P \ S can be difficult

• minimal transversals of hypergraphs can be used to determine the

negative border

• R be a set; a collection H of subsets of R is a simple hypergraph

on R, if no element of H is empty and if X,Y ∈ H and X ⊆ Y

imply X = Y

• elements of H are called the edges

• elements of R are the vertices

• a simple hypergraph H on a set R, a transversal T of H is a

subset of R intersecting all the edges of H

• T is a transversal if and only if T ∩ X 6= ∅ for all X ∈ H

• minimal transversal of H is a transversal T such that no T ′ ⊂ T is

a transversal

• Tr(H)

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns54

Frequent sets

• vertices R; the complements of the sets in the positive border be

the edges of a simple hypergraph H.

• for each set X in the positive border we have the set R \ X as an

edge in H;

• Y ⊆ R; if there is an edge R \X such that Y ∩ (R \X) = ∅, then

Y ⊆ X, and Y is frequent.

• if there is no such edge that the intersection is empty, then Y

cannot be frequent.

• That is, Y is not frequent if and only if Y is a transversal of H.

• Minimal transversals are now the minimal non-frequent sets, i.e.,

the negative border.

Thus:

Negative border = minimal transversals of the complements of the sets

in the positive border

Algorithmic Methods of Data Mining, Fall 2005, Chapter 8: Complexity of finding frequent patterns56

How to use this?

• what if only the maximal frequent sets are needed, but they are

large?

• the levelwise algorithm does not work well

• Dualize-and-advance algorithm:

– compute some maximal frequent sets using a randomized

algorithm

– compute minimal nonfrequent sets

– verify them against the database

– continue until no new sets are found

Chapter 9: Sampling

Algorithmic Methods of Data Mining, Fall 2005, Chapter 9: Sampling 57

9. Sampling in knowledge discovery

• why sampling?

• what types of knowledge can be discovered using sampling?

• basic techniques of sampling (from files)

• sampling in finding association rules

Why sampling?

• lots of data

• many algorithms are worse that linear

• hunting for relatively common phenomena

• solution: take a sample from the data, and analyze it

• if necessary, confirm the findings by looking at the whole data set

Algorithmic Methods of Data Mining, Fall 2005, Chapter 9: Sampling 59

What types of knowledge?

• estimating the sizes of certain subgroups

• opinion polls: about 1000 persons gives an accuracy of around 2

% points

• (the size of the population does not have an influence)

• what about very rare phenomena?

• “there exists a subgroup of 100 objects having these and these

properties”

• very difficult to verify using sampling, if the population is large

Basic techniques of sampling

• sampling from a file

• given a file of N records t1, . . . , tnn, we wish to choose K from

them

• with replacement or without replacement

• with replacement:

– for i = 1 to K do:

∗ generate a random integer b between 1 and N

∗ output record tb

– or sort the generated random integers into order and read the

data once

Algorithmic Methods of Data Mining, Fall 2005, Chapter 9: Sampling 61

Sampling without replacement, basic method

• keep a bit vector of N bits

• generate random integers b between 1 and N and mark bit b, if it

is not already marked

• until K bits have been marked

• read through the bit vector and the data file, and output the

selected records

Sampling without replacement, sequential method

T := K;

M := N ;

i := 1;

while T > 0 do

let b be a random number from [0, 1];

if b < T/M then

output record ti;

T := T − 1;

M := M − 1;

else

M := M − 1;

end;

end;

Algorithmic Methods of Data Mining, Fall 2005, Chapter 9: Sampling 63

Correctness

• by induction on N ; for N = 0 and N = 1, the correctness is clear

• assume the algorithm works for N = N ′; we show that it works

for N = N ′ + 1

• the first element of the file will be selected with probability K/N ,

as required

• what about the next elements? two cases: the first element was

selected or it wasn’t

• probability that an element will be selected is

K

N

K − 1

N − 1
+

N − K

N

K

N − 1
=

K

N

Sampling for association rules

• Current algorithms require several database passes

• For very large databases, the I/O overhead is significant

• Random sample can give accurate results in sublinear time

• Random samples can be used to boost the discovery of exact

association rules (a variant of guess-and-correct algorithm)

• Result: 1 database pass, in the worst case 2 passes

Algorithmic Methods of Data Mining, Fall 2005, Chapter 9: Sampling 65

Simple random sample

Use a random sample only

• Frequent sets can be found in main memory

⇒ very efficient!

• Good news: approximations for frequencies and confidences are

good

• Bad news: applications may require exact rules

Algorithm: first pass

Goal: Exact rules in (almost) one pass

1. Pick a random sample s from r

2. Select a lowered threshold low fr < min fr

3. Compute S = F(s, low fr) in main memory

Goal: S ⊇ F(r,min fr)

4. Compute the exact frequencies of sets in S using the rest of the

database

Algorithmic Methods of Data Mining, Fall 2005, Chapter 9: Sampling 67

A quick analysis

• I/O cost: sampling + 1 sequential database pass

• The method may fail (a frequent set is not in S)

• Larger sample size ⇒ lower failure probability

• Smaller low fr ⇒ lower failure probability

• Smaller low fr ⇒ S is larger i.e., more sets are checked

How to deal with potential failures?

How much must the threshold be lowered?

How many sets have to be checked?

Negative border

• Recall: the border (both positive and negative) has to be

evaluated to verify the result

• Assume S = F(s, low fr) has been computed from a sample s

• If any set not in S is actually frequent in r, then a set in Bd−(S)

must be frequent

Algorithmic Methods of Data Mining, Fall 2005, Chapter 9: Sampling 69

Negative border

• After sampling and computing S, verify both S and Bd−(S) in

the rest of the database (and obtain the exact frequencies)

• If no set in Bd−(S) is frequent, then S is guaranteed to contain

all frequent sets

• If a set X in Bd−(S) is frequent, then a frequent superset of X

might be missed

⇒ Second pass over the database can be necessary, if there are

frequent sets in Bd−(S)

Second pass

• Add the frequent sets in Bd−(S) to S

• Repeat:

– Recompute the negative border of S

– Add the new sets in the negative border to S

• Compute the frequencies of sets in S in one pass over the database

Algorithmic Methods of Data Mining, Fall 2005, Chapter 9: Sampling 71

Sampling as an instance of guess-and-correct

• Use a random sample to obtain a guess S

– Goal: S ⊃ F(r,min fr)

– 1st pass: correction in one direction only (removal of

infrequent sets)

• Negative border Bd−(S) tells whether frequent sets were missed

– If necessary, add all possibly frequent sets to S

– Now S ⊃ F(r,min fr) is guaranteed

– 2nd pass: evaluate S

Dynamic threshold

• Second pass over the database is necessary, if there are frequent

sets in Bd−(S)

• ⇒ Frequencies of border sets can be used to estimate the

probability of a second pass

• Idea: set the lowered threshold in run time, so that the probability

of a second pass is within a desired range

Algorithmic Methods of Data Mining, Fall 2005, Chapter 9: Sampling 73

Chernoff bounds

Theorem 9.8 Given an item set X and a random sample s of size

|s| ≥
1

2ε2
ln

2

δ

the probability that |fr(X, s) − fr(X)| > ε is at most δ.

Proof The Chernoff bounds give the result

Pr[|x − np| > a] < 2e−2a2/n, where x is a random variable with

binomial distribution B(n, p). For the probability at hand we thus have

Pr[|fr(X, s) − fr(X)| > ε]

= Pr[|fr(X, s) − fr(X)| · |s| > ε |s|]

≤ 2e−2(ε |s|)2/|s| ≤ δ.

What does this mean?

Sufficient sample sizes (note: Chernoff bounds are rough!)

ε δ Sample size

0.01 0.01 27 000

0.01 0.001 38 000

0.01 0.0001 50 000

0.001 0.01 2 700 000

0.001 0.001 3 800 000

0.001 0.0001 5 000 000

Table 9.1 Sufficient sample sizes, given ε and δ.

Algorithmic Methods of Data Mining, Fall 2005, Chapter 9: Sampling 75

What about several sets?

Corollary 9.9 Given a collection S of sets and a random sample s of

size

|s| ≥
1

2ε2
ln

2|S|

∆
,

the probability that there is a set X ∈ S such that

|fr(X, s) − fr(X)| > ε is at most ∆.

Proof By Theorem 9.8, the probability that |fr(X, s) − fr(X)| > ε for

a given set X is at most ∆
|S| . Since there are |S| such sets, the

probability in question is at most ∆.

Experiments

• Three benchmark data sets from [AS94]

• Assumption: real data sets can be much larger

• Sampling with replacement (analysis is easier)

• Sample sizes from 20,000 to 80,000

• Every experiment was repeated 100 times

• low fr was set so that the probability of missing any given frequent

set is at most 0.001

Algorithmic Methods of Data Mining, Fall 2005, Chapter 9: Sampling 77

Results

1

2

3

4

5

6

7

1.5 1 0.75 0.5

Passes

min fr (%)

Level-wise r

Partition b

Sampling ⋆

2

rr

r

rr bbbbb

⋆⋆⋆⋆⋆

Figure 9.1 The number of database passes for frequent set

algorithms (T10.I4.D100K)

Results

Lowered frequency threshold

Sample size |s|

min fr (%) 20,000 40,000 60,000 80,000

0.25 0.13 0.17 0.18 0.19

0.50 0.34 0.38 0.40 0.41

0.75 0.55 0.61 0.63 0.65

1.00 0.77 0.83 0.86 0.88

1.50 1.22 1.30 1.33 1.35

2.00 1.67 1.77 1.81 1.84

Table 9.3 Lowered frequency thresholds for δ = 0.001

Algorithmic Methods of Data Mining, Fall 2005, Chapter 9: Sampling 79

Results

Number of sets checked: insignificant increase

Sample size

min fr 20,000 40,000 60,000 80,000 Level-wise

0.50 382,282 368,057 359,473 356,527 318,588

0.75 290,311 259,015 248,594 237,595 188,024

1.00 181,031 158,189 146,228 139,006 97,613

1.50 52,369 40,512 36,679 34,200 20,701

2.00 10,903 7,098 5,904 5,135 3,211

Table 9.5 Number of itemsets considered for data set T10.I4.D100K

Exact I/O savings?

• Depends on storage structures and sampling

methods

• Example 1:

Database size 10 million rows,

sample size 20 thousand rows,

100 rows/disk block

⇒ sampling reads at most 20 % of the database

• Example 2:

database size 10 billion rows

⇒ sampling reads at most 0.02 % of the database

